Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper a new method of frequency jumps detection in data from atomic clock comparisons is proposed. The presented approach is based on histogram analysis for different time intervals averaging phasetime data recorded over a certain period of time. Our method allows identification of multiple frequency jumps for long data series as well to almost real-time jump detection in combination with advanced filtering. Several methods of preliminary data processing have been tested (simple averaging, moving average and Vondrak filtration), to achieve flexibility in adjusting the algorithm parameters for current needs which is the key to its use in determining ensemble time scale or to control systems of physical time scales, such as UTC(PL). The best results have been achieved with the Vondrak filter.
Go to article

Authors and Affiliations

Michał Marszalec
1
Marzenna Lusawa
1
Tomasz Osuch
1 2

  1. National Institute of Telecommunications, Szachowa 1, 94-894 Warsaw, Poland
  2. Warsaw University of Technology, Faculty of Electronics and Information Technology, Institute of Electronic Systems, Nowowiejska 15/19, 00-665 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

A π-phase-shifted fiber Bragg grating (π-FBG) shows high sensitivity to the ultrasonic (US) wave as compared to the conventional FBG due to the strong slow-light phenomenon at the resonance peak. However, its sensitivity is limited by the interrogation schemes. A combination of π-FBG and unbalanced fiber Mach– Zehnder interferometer (F-MZI) are theoretically analyzed and optimized for the highly sensitive acoustic sensor. The coupled-mode theory (CMT) and transfer matrix method (TMM) are used to establish the numerical modelling of π-FBG. For the optimized grating parameters of π-FBG, the proposed sensing system shows the high strain sensitivity of 1.2 × 108/ε, the highest dynamic strain resolution of 4.1fε/√Hz, and the highest wavelength shift resolution of 4.9 × 10−9 pm. Further, the proposed sensing system strongly supports both time andwavelength division multiplexing techniques. Therefore, the proposed sensing system shows extreme importance in single as well as quasi-distributed US acoustic wave sensing networks.

Go to article

Authors and Affiliations

Krishna Mohan Dwivedi
Gaurav Trivedi
Sunil K. Khijwania
Tomasz Osuch

This page uses 'cookies'. Learn more