Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

High pressure die casting (HDPC) allows to produce aluminum parts for car industry of complicated shapes in long series. Dies used in this process must be robust enough to withstand long term injection cycling with liquid aluminum alloys, as otherwise their defects are imprinted on the product making them unacceptable. It is expected that nitriding followed by coating deposition (duplex treatment) should protect them in best way and increase intervals between the cleaning/repairing operations. The present experiment covered investigations of the microstructure of the as nitride and deposited with CrAlN coating as well as its shape after foundry tests. The observations were performed with the scanning and transmission electron microscopy (SEM/TEM) method. They showed that the bottom part of this bi-layer is formed by roughly equi-axed Cr2N crystallites, while the upper one with the fine columnar (CrAl)N crystallites. This bi-layers were matched with a set of 7x nano-layers of CrN/(CrAl)N, while at the coating bottom a CrN buffer layer was placed. The foundry run for up to 19 500 cycles denuded most of coated area exposed to fast liquid flow (40 m/s) but left most of bottom part of the coating in the areas exposed to slower flow (7 m/s). The acquired data indicated that the main weakness of this coating was in its porosity present both at the columnar grain boundaries (upper layer) as well as at the bottom of droplets imbedded in it (both layers). They nucleate cracks propagating perpendicularly and the latter at an angle or even parallel to the substrate. The most crack resistant part of the coating turned-out the bottom layer built of roughly equiaxed fine Cr2N crystallites. Even application of this relatively simple duplex protection in the form of CrAlN coating deposited on the nitride substrate helped to extend the die run in the foundry by more than three times.
Go to article

Authors and Affiliations

A. Wilczek
1
J. Morgiel
2
ORCID: ORCID
A. Sypień
2
ORCID: ORCID
M. Pomorska
2
ORCID: ORCID
Ł. Rogal
2
ORCID: ORCID

  1. Limatherm S.A., Tarnowska Str. 1, 34-600 Limanowa , Poland
  2. Institute of Metallurgy and Materials Science Polish Academy of Science, 25 Reymonta Str., 30-059 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The lack of room-temperature ductility of high-strength TiAl-based alloys called for complicated high temperature processing limiting their application areas. Introduction of additive manufacturing (AM) methods allowed to circumvent this disadvantage, but entailed microstructure refinement affecting, among the others, their oxidation resistance. The dry-air high temperature oxidation processing of TiAl-based alloys is relatively well covered for coarse grained materials, but to what extent the TiAl alloys are affected by the changes caused by the AM remains to be found out. Additionally, the role of nitrogen during these processes was to large extent omitted in previous works. Within the present experiment, the mould cast (MC) and the electron beam melted (EBM) Ti-48Al-2Nb-0.7Cr-0.3Si (at. %) RNT650 alloys were dry-air oxidized at 650°C for 1000 h. The TEM/EDS investigations allowed to confirm that the scale formed during such treatment consists of the layers occupied predominantly by TiO2+Al2O3/TiO2/Al2O3 sequence. Additionally, it was shown that N diffuses to the sub-scale and reacts with the substrate forming two distinct discontinuous sub-layers of α2-Ti3Al(N) and TiN. The scale over EBM was noticeably less porous and nitrogen penetration of the substrate was more extensive, while the MC showed higher susceptibility to local sub-scale oxidation.
Go to article

Authors and Affiliations

J. Morgiel
1
ORCID: ORCID
T. Dudziak
2
ORCID: ORCID
L. Maj
1
ORCID: ORCID
A. Kirchner
3
M. Pomorska
1
ORCID: ORCID
B. Klöden
3
T. Weissgärber
3
D. Toboła
2
ORCID: ORCID

  1. Polish Academy of Science, Institute of Metallurgy and Materials Science, 25 Reymonta Str., 30-059-Kraków, Poland
  2. Łukasiewicz Research Network, Kraków Institute of Technology, 73 Zakopianska Str, 30-418 Kraków, Poland
  3. Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM, Institutsteil Dresden Winterbergstrasse 28, 01277 Dresden, Germany

This page uses 'cookies'. Learn more