Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This article focuses on the difficulties in ensuring longwall stability resulting from the wrong geometric form of the structure of powered support sections. The authors proved, based on the in-situ measurements and numerical calculations, that proper cooperation of the support with the rock mass requires correct determination of the support point for the hydraulic legs along the length of the canopy (ratio), as well as the inclination of the shield support of the section of the powered roof support. The lack of these two fundamental elements may lead to roof drops that directly impact the production results and safety of the people working underground. Another matter arising from the incorrect geometric form of the construction are the values of forces created in the node connecting the canopy with the caving shield, which can make a major contribution to limit the practical range of the operational height of the powered roof support (due to interaction of powered support with rockmass) in terms of the operating range offered by the manufacturer of the powered support. The operating of the powered roof support in some height ranges may hinder, or even in certain cases prevent, the operator of powered support, moving the shields and placing them with the proper geometry (ensuring parallelism between the canopy and the floor bases of the section).

Go to article

Authors and Affiliations

Sylwester Rajwa
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In longwall coal exploitation, problems with the proper functioning of the powered shield support often occur. In many cases, it results from the insufficient load-bearing capacity of the ground (floor) and the inability to achieve the set or yield pressure of the shield support. The improper functioning of the shield support may also result from its construction and the lack of optimisation to work effectively on a weak mine floor. This paper presents an attempt to optimise the operating conditions of the base of two-legged shield support based on the field observations and results of the PFC3D numerical calculation. In the framework of the numerical calculations, the impact of the width of the base and the location of the hydraulic legs on the working conditions of shield support on a weak floor were analysed.
Go to article

Authors and Affiliations

Sylwester Rajwa
1
ORCID: ORCID
Sven Bock
2
ORCID: ORCID

  1. Central Mining Institute (GIG), 1 Gwarków Sq., 40-166 Katowice, Poland
  2. DMT GmbH, Germany
Download PDF Download RIS Download Bibtex

Abstract

Currently available field rock mass deformability determination methods are rather difficult to perform, due to their complexity and a time-consuming nature. This article shows results of a suitability assessment of a Pen206 borehole jack (a hydraulic penetrometer) for field rock mass deformability measurements. This type of the borehole jack is widely used in Polish hard coal mining industry. It was originally intended only for quick rock mass strength parameters determination. This article describes an analysis and scope of basic modifications performed mainly on a borehole jack head. It includes discussion of results with possible directions for future development of the device.

Go to article

Authors and Affiliations

Rafał Pierszalik
ORCID: ORCID
Sylwester Rajwa
ORCID: ORCID
Andrzej Walentek
Krzysztof Bier
Download PDF Download RIS Download Bibtex

Abstract

The stability of longwall mining is one of the most important and the most difficult aspects of underground coal mining. The loss of longwall stability can threaten lives, disrupt the continuity of the mining operations, and it requires significant materials and labour costs associated with replacing the damages. In fact, longwall mining stability is affected by many factors combined. Each case of longwall mining has its own unique and complex geological and mining conditions. Therefore, any case study of longwall stability requires an individual analysis. In Poland, longwall mining has been applied in underground coal mining for years. The stability of the longwall working is often examined using an empirical method. A regular longwall mining panel (F3) operation was designed and conducted at the Borynia-Zofiówka-Jastrzębie (BZJ) coal mine. During its advancement, roof failures were observed, causing a stoppage. This paper aims to identify and determine the mechanisms of these failures that occurred in the F3 longwall. A numerical model was performed using the finite difference method - code FLAC2D, representing the exact geological and mining conditions of the F3 longwall working. Major factors that influenced the stability of the F3 longwall were taken into account. Based on the obtained results from numerical analysis and the in-situ observations, the stability of the F3 longwall was discussed and evaluated. Consequently, recommended practical actions regarding roof control were put forward for continued operation in the F3 longwall panel.
Go to article

Authors and Affiliations

Phu Minh Vuong Nguyen
1
ORCID: ORCID
Sylwester Rajwa
1
ORCID: ORCID
Marek Płonka
1
ORCID: ORCID
Waldemar Stachura
2

  1. Central Mining Institute (GIG), 1 Gwarków Sq., 40-166 Katowice, Poland
  2. Jastrzębska Spółka Węglowa SA, Poland

This page uses 'cookies'. Learn more