Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Waste management faces more and more serious challenges, especially given the growing amount of municipal waste generated in Poland and the resulting environmental impact. One of the significant environmental aspects of waste management is the emission of odorants and odors. Taking into account the odor problem, the majority of municipal waste generated is being collected as mixed waste (62% of municipal waste), which by weight contains approximately 32.7% of kitchen and garden waste. These organic fractions are mainly responsible for the emission of odor and odorants. Those substances can be emitted at every stage: from the waste collection at residential waste bins, through transport, waste storage, and transfer stations, up to various respective treatment facilities, i.e., mechanical-biological waste treatment plants, landfills, or waste incineration plants. The gathered data during the study showed that it is necessary to increase the share of different waste management methods, i.e., recycling, composting, or fermentation processes rather than landfilling to meet all necessary regulations and to fulfill provisions of the waste hierarchy. One of the actions indicated in the legal solutions is expansion, retrofitting, and construction of new sorting plants, anaerobic digestion plants, composting plants, and increase in thermal treatment capacity. Variety of different processes that could emit odors and a diversity of different odor-generating substances released from particular waste management steps should be taken into consideration when building new facilities which are suitable for waste treatment. The overall aim of the work was to characterize and summarize available knowledge about waste management system in Poland and to gather information about odor-generating substances emitted from different waste management steps and facilities, which could be a potential source of information for preparing legal solutions to reduce possible odor nuisance form broadly understood waste management.
Go to article

Bibliography

  1. Aatamila, M., Verkasalo, P.K., Korhonen, M.J., Viluksela, M.K., Pasanen, K., Tiittanen, P. & Nevalainen, A. (2010). Odor annoyance near waste treatment centers: A population-based study in Finland. J. Air Waste Manag. Assoc., 60, pp. 412–418. DOI:10.3155/1047-3289.60.4.412.
  2. Almarcha, D., Almarcha, M., Nadal, S. & Caixach, J. (2012). Comparison of the depuration efficiency for voc and other odoriferous compounds in conventional and advanced biofilters in the abatement of odour emissions from municipal waste treatment plants. Chem. Eng. Trans., 30, pp. 259–264. DOI:10.3303/CET1230044.
  3. Alwaeli, M. (2015). An overview of municipal solid waste management in Poland. The current situation, problems and challenges. Environ. Prot. Eng., 41, pp. 181–193. DOI:10.5277/epel50414.
  4. Bax, C., Sironi, S. & Capelli, L. (2020). How can odors be measured? An overview of methods and their applications. Atmosphere (Basel)., 11. DOI:10.3390/atmos11010092.
  5. Beylot, A., Hochar, A., Michel, P., Descat, M., Ménard, Y. & Villeneuve, J. (2018). Municipal Solid Waste Incineration in France: An Overview of Air Pollution Control Techniques, Emissions, and Energy Efficiency. J. Ind. Ecol., 22, pp. 1016–1026. DOI:10.1111/jiec.12701.
  6. den Boer, E. Banaszkiewicz, K. & Sebastian M. (2018). Badania ilości i składu odpadów komunalnych w cyklu rocznym pochodzących z terenu gminy Wrocław. Raporty Wydziału Inżynierii Środowiska Politechniki Wrocławskiej. Ser. SPR nr 30, 226 (in Polish).
  7. den Boer, E., Jedrczak, A., Kowalski, Z., Kulczycka, J. & Szpadt, R. (2010). A review of municipal solid waste composition and quantities in Poland. Waste Manag., 30, pp. 369–377. DOI:10.1016/j.wasman.2009.09.018.
  8. Brattoli, M., de Gennaro, G., de Pinto, V., Loiotile, A.D., Lovascio, S. & Penza, M. (2011). Odour detection methods: Olfactometry and chemical sensors. Sensors, 11, pp. 5290–5322. DOI:10.3390/s110505290.
  9. Bruno, P., Caselli, M., de Gennaro, G., Solito, M. & Tutino, M. (2007). Monitoring of odor compounds produced by solid waste treatment plants with diffusive samplers. Waste Manag., 27, pp. 539–544. DOI:10.1016/j.wasman.2006.03.006.
  10. Burnley, S.J. (2007). A review of municipal solid waste composition in the United Kingdom. Waste Manag., 27, pp. 1274–1285. DOI:10.1016/j.wasman.2006.06.018.
  11. Butrymowicz T. (2018). Badania odpadów w Jarocinie. Centralne Laboratorium Instytutu Inżynierii Środowiska, Uniwersytet Zielonogórski., unpublished (in Polish).
  12. Cangialosi, F., Intini, G., Liberti, L., Notarnicola, M. & Stellacci, P. (2008). Health risk assessment of air emissions from a municipal solid waste incineration plant - A case study. Waste Manag., 28, pp. 885–895. DOI:10.1016/j.wasman.2007.05.006.
  13. Capelli, L. & Sironi, S. (2018). Combination of field inspection and dispersion modelling to estimate odour emissions from an Italian landfill. Atmos. Environ., 191, pp. 273–290. DOI:10.1016/j.atmosenv.2018.08.007.
  14. Capelli, L., Sironi, S. & del Rosso, R. (2013a). Odor sampling: Techniques and strategies for the estimation of odor emission rates from different source types. Sensors, 13, pp. 938–955. DOI:10.3390/s130100938.
  15. Capelli, L., Sironi, S., Del Rosso, R. & Guillot, J.M. (2013b). Measuring odours in the environment vs. dispersion modelling: A review. Atmos. Environ., 79, pp. 731–743. DOI:10.1016/j.atmosenv.2013.07.029.
  16. Chang, H., Tan, H., Zhao, Y., Wang, Y., Wang, X., Li, Y., Lu, W. & Wang, H. (2019). Statistical correlations on the emissions of volatile odorous compounds from the transfer stage of municipal solid waste. Waste Manag., 87, pp. 701–708. DOI:10.1016/j.wasman.2019.03.014.
  17. Chen, Y.C. (2018). Effects of urbanization on municipal solid waste composition. Waste Manag., 79, pp. 828–836. DOI:10.1016/j.wasman.2018.04.017.
  18. Cheng, Z., Zhu, S., Chen, X., Wang, L., Lou, Z. & Feng, L. (2020). Variations and environmental impacts of odor emissions along the waste stream. J. Hazard. Mater., 384, 120912. DOI:10.1016/j.jhazmat.2019.120912.
  19. Cheng, Z., Sun, Z., Zhu, S., Lou, Z., Zhu, N. & Feng, L. (2019). The identification and health risk assessment of odor emissions from waste landfilling and composting. Sci. Total Environ., 649, pp. 1038–1044. DOI:10.1016/j.scitotenv.2018.08.230.
  20. Colón, J., Alvarez, C., Vinot, M., Lafuente, F.J., Ponsá, S., Sánchez, A. & Gabriel, D. (2017). Characterization of odorous compounds and odor load in indoor air of modern complex MBT facilities. Chem. Eng. J., 313, pp. 1311–1319. DOI:10.1016/j.cej.2016.11.026.
  21. Conti, C., Guarino, M. & Bacenetti, J. (2020). Measurements techniques and models to assess odor annoyance: A review. Environ. Int., 134, 105261. DOI:10.1016/j.envint.2019.105261.
  22. Curren, J., Hallis, S.A., Snyder, C. (Cher) L. & Suffet, I. (Mel) H. (2016). Identification and quantification of nuisance odors at a trash transfer station. Waste Manag., 58, pp. 52–61. DOI:10.1016/j.wasman.2016.09.021.
  23. Çetin Doğruparmak, Ş., Pekey, H. & Arslanbaş, D. (2018). Odor dispersion modeling with CALPUFF: Case study of a waste and residue treatment incineration and utilization plant in Kocaeli, Turkey. Environ. Forensics, 19, pp. 79–86. DOI:10.1080/15275922.2017.1408160.
  24. Damgaard, A., Riber, C., Fruergaard, T., Hulgaard, T. & Christensen, T.H. (2010) Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration. Waste Manag., 30, pp. 1244–1250. DOI:10.1016/j.wasman.2010.03.025.
  25. Defoer, N., De Bo, I., Van Langenhove, H., Dewulf, J. & Van Elst, T. (2002) Gas chromatography-mass spectrometry as a tool for estimating odour concentrations of biofilter effluents at aerobic composting and rendering plants. J. Chromatogr. A, 970, pp. 259–273. DOI:10.1016/S0021-9673(02)00654-4.
  26. Di Foggia, G., Beccarello, M. (2021) Market structure of urban waste treatment and disposal: Empirical evidence from the italian industry. Sustain., 13. DOI:10.3390/su13137412.
  27. Di, Y., Liu, J., Liu, J., Liu, S. & Yan, L. (2013). Characteristic analysis for odor gas emitted from food waste anaerobic fermentation in the pretreatment workshop. J. Air Waste Manag. Assoc., 63, pp. 1173–1181. DOI:10.1080/10962247.2013.807318.
  28. Directive 2008/98/EC of The European Parliment and of The Council of 19 November 2008 on waste and repealing certain Directives.
  29. Duan, Z., Scheutz, C. & Kjeldsen, P. (2021). Trace gas emissions from municipal solid waste landfills: A review. Waste Manag., 119, pp. 39–62. DOI:10.1016/j.wasman.2020.09.015.
  30. European Comission Eurostat Available online: https://ec.europa.eu/eurostat/web/main/data/database.
  31. European Union Council Directive 1999/31/EC on the landfill, 1999.
  32. European Union Directive 2018/851 amending Directive 2008/98/EC on waste.
  33. Fang, J.J., Yang, N., Cen, D.Y., Shao, L.M. & He, P.J. (2012). Odor compounds from different sources of landfill: Characterization and source identification. Waste Manag., 32, pp. 1401–1410. DOI:10.1016/j.wasman.2012.02.013.
  34. Fang, J., Zhang, H., Yang, N., Shao, L. & He, P. (2013). Gaseous pollutants emitted from a mechanical biological treatment plant for municipal solid waste: Odor assessment and photochemical reactivity. J. Air Waste Manag. Assoc., 63, pp. 1287–1297. DOI:10.1080/10962247.2013.822439.
  35. Fei, F., Wen, Z., Huang, S. & De Clercq, D. (2018). Mechanical biological treatment of municipal solid waste: Energy efficiency, environmental impact and economic feasibility analysis. J. Clean. Prod., 178, pp. 731–739. DOI:10.1016/j.jclepro.2018.01.060.
  36. Forastiere, F., Badaloni, C., De Hoogh, K., Von Kraus, M.K., Martuzzi, M., Mitis, F., Palkovicova, L., Porta, D., Preiss, P. & Ranzi, A. (2011). Health impact assessment of waste management facilities in three European countries. Environ. Heal. A Glob. Access Sci. Source, 10, pp. 1–13. DOI:10.1186/1476-069X-10-53.
  37. Giusti, L. (2009). A review of waste management practices and their impact on human health. Waste Manag., 29, pp. 2227–2239. DOI:10.1016/j.wasman.2009.03.028.
  38. Guo, H., Duan, Z., Zhao, Y., Liu, Y., Mustafa, M.F., Lu, W. & Wang, H. (2017). Characteristics of volatile compound emission and odor pollution from municipal solid waste treating/disposal facilities of a city in Eastern China. Environ. Sci. Pollut. Res., 24, pp. 18383–18391. DOI:10.1007/s11356-017-9376-8.
  39. He, P., Du, W., Xu, X., Zhang, H., Shao, L. & Lü, F. (2020). Effect of biochemical composition on odor emission potential of biowaste during aerobic biodegradation. Sci. Total Environ., 727, 138285. DOI:10.1016/j.scitotenv.2020.138285.
  40. Heyer, K.U., Hupe, K. & Stegmann, R. (2013). Methane emissions from MBT landfills. Waste Manag., 33, pp. 1853–1860. DOI:10.1016/j.wasman.2013.05.012.
  41. Hou, J.Q., Li, M.X., Wei, Z.M., Xi, B.D., Jia, X., Zhu, C.W. & Liu, D.M. (2013). Critical components of odors and VOCs in mechanical biological treatment process of MSW. Adv. Mater. Res., 647, pp. 438–449. DOI:10.4028/www.scientific.net/AMR.647.438.
  42. Iakovou, E., Karagiannidis, A., Vlachos, D., Toka, A. & Malamakis, A. (2010). Waste biomass-to-energy supply chain management: A critical synthesis. Waste Manag., 30, pp. 1860–1870. DOI:10.1016/j.wasman.2010.02.030.
  43. Internet source, website accessed on 15.07.2021, available online https://www.portalsamorzadowy.pl/gospodarka-komunalna/spalarnie-w-polsce-gdzie-dzialaja-kto-buduje-a-kto-ma-je-w-planie,253488.html.
  44. Jędrczak, A., den Boer, E., Kamińska-Boerak, J., Kozłowska B., Szpadt, R., Mierzwiński A., Krzyśków, A. & Kundegórski, M. (2020). Analysis of waste management costs - assessment of investment needs in the country in the field of waste prevention and waste management in connection with the new EU financial perspective 2021-2027, IOŚ-PIB, NFOŚiGW, Warszawa (in Polish) (unpublished report). Available online: https://odpady.net.pl/wp-content/uploads/2021
  45. Jędrczak, A., den Boer, E., Kamińska-Borak, J., Szpadt, R., Krzyśków, A. & Wielgosiński, G. (2021). Analysis of the possibilities and barriers to the management of plastic waste from separate collection of municipal waste, and the issues of circular economy, IOŚ-PIB, NFOŚiGW, Warszawa (in Polish) (unpublished report). Available online: https://ios.edu.pl/aktualnosci/analiza-mozliwosci-i-barier-zagospodarowania-odpadow-z-tworzyw-sztucznych-a-goz/
  46. Jiang, J., Wang, F., Wang, J. & Li, J. (2021). Ammonia and hydrogen sulphide odour emissions from different areas of a landfill in Hangzhou, China. Waste Manag. Res., 39, pp. 360–367. DOI:10.1177/0734242X20960225.
  47. Jońca, J., Pawnuk, M., Arsen, A. & Sówka, I. (2022) Electronic Noses and Their Applications for Sensory and Analytical Measurements in the Waste Management Plants—A Review. Sensors, 22, 1510. https://DOI:10.3390/s22041510
  48. Ko, J.H., Xu, Q. & Jang, Y.C. (2015). Emissions and Control of Hydrogen Sulfide at Landfills: A Review. Crit. Rev. Environ. Sci. Technol., 45, pp. 2043–2083. DOI:10.1080/10643389.2015.1010427.
  49. Kulig, A. & Szylak-Szydlowski, M. (2016). Assessment of range of olfactory impact of plant to mechanical-biological treatment of municipal waste. Chem. Eng. Trans., 54, pp. 247–252. DOI:10.3303/CET1654042.
  50. Le Bihan, Y., Loranger-King, D., Turgeon, N., Pouliot, N., Moreau, N., Deschênes, D. & Rivard, G. (2020). Use of alternative cover materials to control surface emissions (H2s and vocs) at an engineered landfill. Detritus, 10, pp. 118–126. DOI:10.31025/2611-4135/2020.13909.
  51. Liu, Y., Lu, W., Wang, H., Gao, X. & Huang, Q. (2019). Improved impact assessment of odorous compounds from landfills using Monte Carlo simulation. Sci. Total Environ., 648, pp. 805–810. DOI:10.1016/j.scitotenv.2018.08.213.
  52. Liu, Y., Yang, H. & Lu, W. (2020). VOCs released from municipal solid waste at the initial decomposition stage: Emission characteristics and an odor impact assessment. J. Environ. Sci. (China), 98, pp. 143–150. DOI:10.1016/j.jes.2020.05.009.
  53. Long, Y., Zhang, S., Fang, Y., Du, Y., Liu, W., Fang, C. & Shen, D. (2017). Dimethyl sulfide emission behavior from landfill site with air and water control. Biodegradation, 28, pp. 327–335. DOI:10.1007/s10532-017-9799-4.
  54. Lou, Z., Wang, M., Zhao, Y. & Huang, R. (2015). The contribution of biowaste disposal to odor emission from landfills. J. Air Waste Manag. Assoc., 65, pp. 479–484. DOI:10.1080/10962247.2014.1002870.
  55. Lucernoni, F., Tapparo, F., Capelli, L. & Sironi, S. (2016). Evaluation of an Odour Emission Factor (OEF) to estimate odour emissions from landfill surfaces. Atmos. Environ., 144, pp. 87–99. DOI:10.1016/j.atmosenv.2016.08.064.
  56. Maurer, D.L., Bragdon, A.M., Short, B.C., Ahn, H. & Koziel, J.A. (2018). Improving environmental odor measurements: Comparison of lab-based standard method and portable odor measurement technology. Arch. Environ. Prot., 44, pp. 100–107. DOI:10.24425/119699.
  57. Meišutovič-Akhtarieva, M. & Marčiulaitienė, E. (2017). Research on odours emitted from non-hazardous waste landfill using dynamic olfactometry. 10th Int. Conf. Environ. Eng. ICEE 2017, pp. 27–28. DOI:10.3846/enviro.2017.034.
  58. Monzambe, G.M., Mpofu, K. & Daniyan, I.A. (2021). Optimal location of landfills and transfer stations for municipal solid waste in developing countries using non-linear programming. Sustain. Futur., 3, 100046. DOI:10.1016/j.sftr.2021.100046.
  59. Mustafa, M.F., Liu, Y., Duan, Z., Guo, H., Xu, S., Wang, H. & Lu, W. (2017). Volatile compounds emission and health risk assessment during composting of organic fraction of municipal solid waste. J. Hazard. Mater., 327, pp. 35–43. DOI:10.1016/j.jhazmat.2016.11.046.
  60. Naddeo, V., Zarra, T., Oliva, G., Chiavola, A., Vivarelli, A. & Cardona, G. (2018). Odour impact assessment of a large municipal solid waste landfill under different working phases. Glob. Nest J., 20, pp. 654–658. DOI:10.30955/gnj.002770.
  61. Oleniacz, R. (2014). Impact of the municipal solid waste incineration plant in Warsaw on air quality. Geomatics Environ. Eng., 8, 25. DOI:10.7494/geom.2014.8.4.25.
  62. Palmiotto, M., Fattore, E., Paiano, V., Celeste, G., Colombo, A. & Davoli, E. (2014). Influence of a municipal solid waste landfill in the surrounding environment: Toxicological risk and odor nuisance effects. Environ. Int., 68, pp. 16–24. DOI:10.1016/j.envint.2014.03.004.
  63. Pawnuk, M., Grzelka, A., Miller, U. & Sówka, I. (2020). Prevention and reduction of odour nuisance in waste management in the context of the current legal and technological solutions. J. Ecol. Eng., 21, pp. 34–41. DOI:10.12911/22998993/125455.
  64. Polish Committee for Standardization. Polish Standard PN-EN 13725:2007: Air Quality—Determination of Odour Concentration by Dynamic Olfactometry, Polish Committee for Standardization: Warsaw, Poland, 2007.
  65. Ragazzi, M., Tosi, P., Rada, E.C., Torretta, V. & Schiavon, M. (2014). Effluents from MBT plants: Plasma techniques for the treatment of VOCs. Waste Manag., 34, pp. 2400–2406. DOI:10.1016/j.wasman.2014.07.026.
  66. Sánchez-Monedero, M.A., Fernández-Hernández, A., Higashikawa, F.S. & Cayuela, M.L. (2018). Relationships between emitted volatile organic compounds and their concentration in the pile during municipal solid waste composting. Waste Manag., 79, pp. 179–187. DOI:10.1016/j.wasman.2018.07.041.
  67. Scaglia, B., Orzi, V., Artola, A., Font, X., Davoli, E., Sanchez, A. & Adani, F. (2011). Odours and volatile organic compounds emitted from municipal solid waste at different stage of decomposition and relationship with biological stability. Bioresour. Technol., 102, pp. 4638–4645. DOI:10.1016/j.biortech.2011.01.016.
  68. Schiavon, M., Martini, L.M., Corrà, C., Scapinello, M., Coller, G., Tosi, P. & Ragazzi, M. (2017). Characterisation of volatile organic compounds (VOCs) released by the composting of different waste matrices. Environ. Pollut., 231, pp. 845–853. DOI:10.1016/j.envpol.2017.08.096.
  69. Schlegelmilch, M., Streese, J. & Stegmann, R. (2005). Odour management and treatment technologies: An overview. Waste Manag., 25, pp. 928–939. DOI:10.1016/j.wasman.2005.07.006.
  70. Shi, X., Zheng, G., Shao, Z. & Gao, D. (2020). Effect of source-classified and mixed collection from residential household waste bins on the emission characteristics of volatile organic compounds. Sci. Total Environ., 707, 135478. DOI:10.1016/j.scitotenv.2019.135478.
  71. Sironi, S., Capelli, L., Céntola, P. & Del Rosso, R. (2007). Odour emissions from MSW composting process steps. Int. J. Environ. Technol. Manag., 7, pp. 304–316. DOI:10.1504/IJETM.2007.015148.
  72. Sironi, S., Capelli, L., Céntola, P., Del Rosso, R. & Il Grande, M. (2006). Odour emission factors for the prediction of odour emissions from plants for the mechanical and biological treatment of MSW. Atmos. Environ., 40, pp. 7632–7643. DOI:10.1016/j.atmosenv.2006.06.052.
  73. Sonibare, O.O., Adeniran, J.A. & Bello, I.S. (2019). Landfill air and odour emissions from an integrated waste management facility. J. Environ. Heal. Sci. Eng., 17, pp. 13–28. DOI:10.1007/s40201-018-00322-1.
  74. Statistic Poland Environment 2020. Stat. Anal. 2020, pp. 154–161.
  75. Statistic Poland Local Data Bank (2021) Available online: https://bdl.stat.gov.pl/BDL/dane/podgrup/temat.
  76. Szulczyński, B., Wasilewski, T., Wojnowski, W., Majchrzak, T., Dymerski, T., Namiésnik, J. & Gębicki, J. (2017). Different ways to apply a measurement instrument of E-nose type to evaluate ambient air quality with respect to odour nuisance in a vicinity of municipal processing plants. Sensors (Switzerland), 17. DOI:10.3390/s17112671.
  77. Tan, H., Zhao, Y., Ling, Y., Wang, Y. & Wang, X. (2017). Emission characteristics and variation of volatile odorous compounds in the initial decomposition stage of municipal solid waste. Waste Manag., 68, pp. 677–687. DOI:10.1016/j.wasman.2017.07.015.
  78. Tagliaferri, F., Invernizzi, M., Sironi, S. & Capelli, L. (2020). Influence of modelling choices on the results of landfill odour dispersion. Detritus, 12, pp. 92–99. DOI:10.31025/2611-4135/2020.13998.
  79. The Act of 14 December 2012 on waste (Journal of Laws of 2020, item 797) (in Polish).
  80. Tyrała K. (2019. Conducting research on the quantity and morphological composition of municipal waste in Bydgoszcz. Final report. Collective analysis of the entire study, R.O.T. RECYCLING ODPADY TECHNOLOGIE S.C. K, Gliwice, (in Polish).
  81. VDI 3882 PART 1 Olfactometry, determination of odour intensity, Verein Deutscher Ingenieure, Germany, 1992.
  82. VDI 3880: Olfactometry. Static Sampling, Verein Deutscher Ingenieure, Germany, 2011.
  83. Wang, Y., Li, L., Qiu, Z., Yang, K., Han, Y., Chai, F., Li, P. & Wang, Y. (2021). Trace volatile compounds in the air of domestic waste landfill site: Identification, olfactory effect and cancer risk. Chemosphere, 272, 129582. DOI:10.1016/j.chemosphere.2021.129582.
  84. Wiśniewska, M. (2020a). Analysis of Potential Exposure to Components of Municipal Solid Waste in a Mechanical Biological Treatment. Proceedings, 51, 10. DOI:10.3390/proceedings2020051010.
  85. Wiśniewska, M. (2020b) Methods of assessing odour emissions from biogas plants processing municipal waste. J. Ecol. Eng., 21, pp. 140–147. DOI:10.12911/22998993/113039.
  86. Wiśniewska, M., Kulig, A. & Lelicińska-Serafin, K. (2021). The use of chemical sensors to monitor odour emissions at municipal waste biogas plants. Appl. Sci., 11. DOI:10.3390/app11093916.
  87. Wiśniewska, M., Kulig, A. & Lelicińska-Serafin, K. (2020a). Odour emissions of municipal waste biogas plants-impact of technological factors, air temperature and humidity. Appl. Sci., 10. DOI:10.3390/app10031093.
  88. Wiśniewska, M., Kulig, A. & Lelicińska-Serafin, K. (2020b). Olfactometric testing as a method for assessing odour nuisance of biogas plants processing municipal waste. Arch. Environ. Prot., 46, pp. 60–68. DOI:10.24425/aep.2020.134536.
  89. Wiśniewska, M., Kulig, A. & Lelicińska-Serafin, K. (2019). Comparative analysis of preliminary identification and characteristic of odour sources in biogas plants processing municipal waste in Poland. SN Appl. Sci., 1, pp. 1–10. DOI:10.1007/s42452-019-0534-0.
  90. Wiśniewska, M. & Szyłak-Szydłowski, M. (2021). The air and sewage pollutants from biological waste treatment. Processes, 9, pp. 1–13. DOI:10.3390/pr9020250.
  91. Wu, C., Shu, M., Liu, X., Sang, Y., Cai, H., Qu, C. & Liu, J. (2020). Characterization of the volatile compounds emitted from municipal solid waste and identification of the key volatile pollutants. Waste Manag., 103, pp. 314–322. DOI:10.1016/j.wasman.2019.12.043.
  92. Xu, A., Chang, H., Zhao, Y., Tan, H., Wang, Y., Zhang, Y., Lu, W. & Wang, H. (2020). Dispersion simulation of odorous compounds from waste collection vehicles: Mobile point source simulation with ModOdor. Sci. Total Environ., 711, 135109. DOI:10.1016/j.scitotenv.2019.135109.
  93. Yao, X.Z., Ma, R.C., Li, H.J., Wang, C., Zhang, C., Yin, S.S., Wu, D., He, X.Y., Wang, J. & Zhan, L.T. (2019). Assessment of the major odor contributors and health risks of volatile compounds in three disposal technologies for municipal solid waste. Waste Manag., 91, pp. 128–138. DOI:10.1016/j.wasman.2019.05.009.
  94. Zemanek, J., Wozniak, A. & Malinowski, M. (2011). The role and place of solid waste transfer station in the waste management system. Polish Acad. Sci. Cracow Branch 2011, 11, pp. 5–13.
  95. Zhang, Y., Ning, X., Li, Y., Wang, J., Cui, H., Meng, J., Teng, C., Wang, G. & Shang, X. (2021). Impact assessment of odor nuisance, health risk and variation originating from the landfill surface. Waste Manag., 126, pp. 771–780. DOI:10.1016/j.wasman.2021.03.055.
  96. Zhang, H., Schuchardt, F., Li, G., Yang, J. & Yang, Q. (2013). Emission of volatile sulfur compounds during composting of municipal solid waste (MSW). Waste Manag., 33, pp. 957–963. DOI:10.1016/j.wasman.2012.11.008.
  97. Zhao, Y., Lu, W. & Wang, H. (2015). Volatile trace compounds released from municipal solid waste at the transfer stage: Evaluation of environmental impacts and odour pollution. J. Hazard. Mater., 300, pp. 695–701. DOI:10.1016/j.jhazmat.2015.07.081.
  98. Zielnica J. & Cudakiewicz P. (2016). Morphological studies of municipal waste generated in the Szczecin City Commune 2015-2016, SWECO (in Polish).
Go to article

Authors and Affiliations

Marcin Pawnuk
1
ORCID: ORCID
Bartosz Szulczyński
2
ORCID: ORCID
Emilia den Boer
1
ORCID: ORCID
Izabela Sówka
1
ORCID: ORCID

  1. Department of Environment Protection Engineering, Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Poland
  2. Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents investigations on the removal of cyclohexane and ethanol from air in polyurethane- -packed biotrickling filters, inoculated with Candida albicans and Candida subhashii fungal species. Results on process performance together with flow cytometry analyses of the biofilm formed over packing elements are presented and discussed. The results indicate that the presence of ethanol enhances the removal efficiency of cyclohexane from air. This synergistic effect may be attributed to both co-metabolism of cyclohexane with ethanol as well as increased sorption efficiency of cyclohexane to mineral salt medium in the presence of ethanol. Maximum elimination capacities of 89 g m-3 h-1 and 36.7 g m-3 h-1 were noted for cyclohexane and ethanol, respectively, when a mixture of these compounds was treated in a biofilter inoculated with C. subhashii. Results of flow cytometry analyses after 100 days of biofiltration revealed that about 91% and 88% of cells in biofilm remained actively dividing, respectively for C. albicans and C. subhashii species, indicating their good condition and ability to utilize cyclohexane and ethanol as a carbon source.
Go to article

Bibliography

  1. Avalos, Ramirez, A., Jones, J.P. & Heitz, M. (2007). Biotrickling filtration of air contaminated with ethanol, Journal of Chemical Technology and Biotechnology, 82, pp. 149–157, https://doi.org/10.1002/jctb.1644.
  2. Cheng, Y., He, H., Yang, C., Zeng, G., Li, X., Chen, H. & Yu, G. (2016). Challenges and solutions for biofiltration of hydrophobic volatile organic compounds, Biotechnology Advances, 34, 1091–1102, https://doi.org/10.1016/j.biotechadv.2016.06.007
  3. Cheng, Y., Li, X., Liu, H., Yang, C., Wu, S., Du, C., Nie, L. & Zhong, Y. (2020). Effect of presence of hydrophilic volatile organic compounds on removal of hydrophobic n-hexane in biotrickling filters, Chemosphere 252, 126490, https://doi.org/10/1016/j.chemosphere.2020.126490.
  4. Cox, H.H.J., Sexton, T., Shareefdeen, Z.M. & Deshusses, M.A. (2001). Thermophilic Biotrickling Filtration of Ethanol Vapors, Environmental Science and Technology, 35, pp. 2612–2619, https://doi.org/10.1021/es001764h.
  5. Ferdowsi, M., Avalos, Ramirez, A., Jones, J.P. & Heitz, M. (2017). Elimination of mass transfer and kinetic limited organic pollutants in biofilters: A review, International Biodeterioration and Biodegradation, 119, pp. 336–348,https://doi.org/10.1016/j.ibiod.2016.10.015.
  6. Gospodarek, M., Rybarczyk, P., Szulczyński, B. & Gębicki, J. (2019). Comparative Evaluation of Selected Biological Methods for the Removal of Hydrophilic and Hydrophobic Odorous VOCs from Air, Processes 7, 187, https://doi.org/10.3390/pr7040187.
  7. He, S., Ni, Y., Lu, L., Chai, Q., Yu, T., Shen, Z. & Yang, C. (2020). Simultaneous degradation of n-hexane and production of biosurfactants by Pseudomonas sp. strain NEE2 isolated from oil-contaminated soils, Chemosphere 242, 125237, https://doi.org/10.1016/j.chemosphere.2019.125237.
  8. Martinez-Rojano, H., Mancilla-Ramirez, J., Quiñonez-Diaz, L. & Galindo-Sevilla, N. (2008). Activity of hydroxyurea against Leishmania mexicana, Antimicrobial Agents Chemotheraphy 52, pp. 3642–3647, https://doi.org/10.1128/aac.00124-08.
  9. Miller, U., Sówka, I. & Adamiak, W. (2019). The effect of betaine on the removal of toluene by biofiltration, SN Applied Sciences 1, https://doi.org/10.1007/s42452-019-0832-6.
  10. Miller, U., Sówka, I. & Adamiak, W. (2020). The use of surfactant from the Tween group in toluene biofi ltration, Archives of Environmental Protection, Vol. 46 no. 2 pp. 53–57, DOI: 10.24425/aep.2020.133474.
  11. Mudliar, S., Giri, B., Padoley, K., Satpute, D., Dixit, R., Bhatt, P., Pandey, R., Juwarkar, A. & Vaidya, A. (2010). Bioreactors for treatment of VOCs and odours – A review, Journal of Environmental Management 91, pp. 1039–1054,https://doi.org/10.1016/j.jenvman.2010.01.006.
  12. Purswani, J., Juárez, B., Rodelas, B., Gónzalez-López, J. & Pozo, C. (2011). Biofilm formation and microbial activity in a biofilter system in the presence of MTBE, ETBE and TAME, Chemosphere 85, pp. 616–624, https://doi.org/10.1016/j.chemosphere.2011.06.106.
  13. Ramani, R., Ramani, A. & Wong, S.J. (1997). Rapid Flow Cytometric Susceptibility Testing of Candida albicans, Journal of Clinical Microbiology 35(9):2320-4, DOI: 10.1128/jcm.35.9.2320-2324.1997.
  14. Rybarczyk, P., Szulczyński, B. & Gębicki, J. (2020). Simultaneous Removal of Hexane and Ethanol from Air in a Biotrickling Filter – Process Performance and Monitoring Using Electronic Nose, Sustainability 12, 387, https://doi.org/10.3390/su12010387.
  15. Rybarczyk, P., Szulczyński, B., Gębicki, J. & Hupka, J. (2019a). Treatment of malodorous air in biotrickling filters: A review, Biochemical Engineering Journal 141, pp. 146–162, https://doi.org/10.1016/j.bej.2018.10.014.
  16. Rybarczyk, P., Szulczyński, B., Gospodarek, M. & Gębicki, J. (2019b). Effects of n-butanol presence, inlet loading, empty bed residence time and starvation periods on the performance of a biotrickling filter removing cyclohexane vapors from air, Chemical Papers 74, pp. 1039–1047,https://doi.org/10.1007/s11696-019-00943-2.
  17. Salamanca, D., Dobslaw, D. & Engesser, K.-H. (2017). Removal of cyclohexane gaseous emissions using a biotrickling filter system, Chemosphere 176, pp. 97–107, https://doi.org/10.1016/j.chemosphere.2017.02.078.
  18. Spigno, G., Pagella, C., Fumi, M.D., Molteni, R. & De Faveri, D.M. (2003). VOCs removal from waste gases: Gas-phase bioreactor for the abatement of hexane by Aspergillus niger, Chemical Engineering Science 58, pp. 739–746, https://doi.org/10.1016/S0009-2509(02)00603-6.
  19. Yalkowsky, S.H., He, Y. & Jain, P. (2016). Handbook of Aqueous Solubility Data, Handbook of Aqueous Solubility Data. CRC Press,https://doi.org/10.1201/ebk1439802458.
  20. Yang, C., Chen, H., Zeng, G., Yu, G. & Luo, S. (2010). Biomass accumulation and control strategies in gas biofiltration, Biotechnology Advances 28, 4, pp. 531–540, https://doi.org/10.1016/j.biotechadv.2010.04.002.
  21. Yang, C., Qian, H., Li, X., Cheng, Y., He, H., Zeng, G. & Xi, J. (2018). Simultaneous Removal of Multicomponent VOCs in Biofilters, Trends in Biotechnology 36, 7, pp. 673–685, https://doi.org/10.1016/j.tibtech.2018.02.004.
  22. Zhang, Y., Liss, S.N. & Allen, D.G. (2006). The effects of methanol on the biofiltration of dimethyl sulfide in inorganic biofilters, Biotechnology and Bioengineering 95, pp. 734–743, https://doi.org/10.1002/bit.21033.
  23. Zhang, Y., Liu, J., Qin, Y., Yang, Z., Cao, J., Xing, Y. & Li, J. (2019). Performance and microbial community evolution of toluene degradation using a fungi-based bio-trickling filter, Journal of Hazardous Materials 365, pp. 642–649, https://doi.org/10.1016/j.jhazmat.2018.11.062.
  24. Zhanga, Y., Denga, W., Qina, Y., Yanga, Z., Liua, J. & Lia, J. (2018) Research on Simultaneous Removal of Cyclohexane and Methyl Acetate in Biotrickling Filters, Proceedings of the 2nd International Conference of Recent Trends in Environmental Science and Engineering, Niagara Falls, Canada, https://doi.org/10.11159/rtese18.107.
Go to article

Authors and Affiliations

Piotr Rybarczyk
1
ORCID: ORCID
Milena Marycz
1
Bartosz Szulczyński
1
ORCID: ORCID
Anna Brillowska-Dąbrowska
2
Agnieszka Rybarczyk
3
Jacek Gębicki
1
ORCID: ORCID

  1. Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology
  2. Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology
  3. Department of Histology, Faculty of Medicine, Medical University of Gdańsk
Download PDF Download RIS Download Bibtex

Abstract

This article presents the validity, advisability and purposefulness of using a gas sensor matrix to monitor air deodorization processes carried out in a peat-perlite-polyurethane foam-packed biotrickling filter. The aim of the conducted research was to control the effectiveness of air stream purification from vapors of hydrophobic compounds, i.e., n-hexane and cyclohexane. The effectiveness of hydrophobic n-hexane and cyclohexane removal from air was evaluated using gas chromatography as the reference method and a custom-built gas sensor matrix consisting of seven commercially available sensors. The influence of inlet loading (IL) of n-hexane and cyclohexane on the biotrickling filtration performance was investigated. The prepared sensor matrix was calibrated with use of two statistical techniques: Multiple Linear Regression (MLR) and Principal Component Regression (PCR). The developed mathematical models allowed us to correlate the multidimensional signal from the sensor array with the concentration of the removed substances. The results based on gas chromatography analyses indicated that the elimination efficiencies of n-hexane and cyclohexane reached about 40 and 30 g m-3 h-1, respectively. The results obtained using a gas sensor matrix revealed that it was possible not only to determine concentration reliably of investigated hydrophobic volatile organic compounds in the gas samples, but also to obtain results of a similar high level of quality as the chromatographic ones. A gas-sensor matrix proposed in this work can be used for on-line real-time monitoring of biofiltration process performance of air polluted with n-hexane and cyclohexane.
Go to article

Bibliography

  1. Arnold, M., Reittu, A., von Wright, A., Martikainen, P.J. & Suihko, M-L. (1997). Bacterial degradation of styrene in waste gases using a peat filter. Applied Microbiology and Biotechnology, 48, pp.738-744. DOI:10.1007/s002530051126
  2. Brattoli, M., De Gannero, G., De Pinto, V., Loiotile, A.D., Lovascio, S. & Penza, M. (2011). Odour detection methods: olfactometry and chemical sensors. Sensors, 11, 5, pp. 5290-5322. DOI:10.3390/s110505290
  3. Buliner, E.A., Koziel, J.A., Cai, L. & Wright, D. (2012). Characterization of livestock odors using steel plates solid-phase microextraction, and multidimensional gas chromatography-mass spectrometry-olfactometry. Journal of the Air & Waste Management Association, 56, 10, pp. 1391-1403. DOI:10.1080/10473289.2006.10464547
  4. Cabeza, I.O., Lopez, R., Giraldez, I., Stuetz, R.M. & Diaz, M.J. (2013). Biofiltration of α-piene vapours using municipal solid waste (MSW) – Pruning residues (P) composts as packing materials. Chemical Engineering Journal, 233, pp. 149-158. DOI:10.1016/j.cej.2013.08.032
  5. Chen, Y., Wang, X., He, S., Zhu, S. & Shen, S. (2016). The performance of a two-layer biotrickling filter filled with new mixed packing materials for the removal of H_2 S from air. Journal of Environmental Management, 165, 1, pp. 11-16. DOI:10.1016/j.jenvman.2015.09.008
  6. Cheng, Y., He, H., Yang, C., Yan, Z., Zeng, G. & Qian, H. (2016a). Effects of anionic surfactant on n-hexane removal in biofilters. Chemosphere, 150, pp. 248-253. DOI:10.1016/j.chemosphere.2016.02.027
  7. Cheng, Y., He, H., Yang, C., Zeng, G., Li, X., Chen, H. & Yu, G. (2016b). Challenges and solutions for biofiltration of hydrophobic volatile organic compounds. Biotechnology Advances, 34, 6, pp. 1091-1102. DOI:10.1016/j.biotechadv.2016.06.007
  8. Cheng, Z., Sun, Z., Zhu, S., Lou, Z., Zhu, N. & Feng, L. (2019). The identification and health risk assessment of odor emissions from waste landfilling and composting. Science of The Total Environment, 649, pp. 1038-1044. DOI:10.1016/j.scitotenv.2018.08.230
  9. Chou, M-S. & Shiu, W-Z. (2011). Bioconversion of Methylamine in Biofilters. Journal of the Air & Waste Management Association, 47, 1, pp. 58-65. DOI:10.1080/10473289.1997.10464408
  10. Fang, J-J., Yang, N., Cen, D-Y., Shao, L-M. & He, P-J. (2012). Odor compounds from different sources of landfill: Characterization and source identification. Waste Management, 32, 7, pp. 1401-1410. DOI:10.1016/j.wasman.2012.02.013
  11. Giungato, P., Gilo, A.D., Palmisani, J., Marzocca, A., Mazzone, A., Brattoli, M., Giua, R. & de Gennaro, G. (2018). Synergistic approaches for odor active compounds monitoring and identification: State of the art, integration, limits and potentialities of analytical and sensorial techniques. Trends in Analytical Chemistry, 107, pp. 116-129. DOI:10.1016/j.trac.2018.07.019
  12. Liang, Z., Wang, J., Zhang, Y., Han, C., Ma, S., Chen, J., Li, G. & An, T. (2020). Removal of volatile organic compounds (VOCs) emitted from a textile dyeing wastewater treatment plant and the attenuation of respiratory health risks using a pilot-scale biofilter. Journal of Cleaner Production, 253, pp. 120019. DOI:10.1016/j.jclepro.2020.120019
  13. Lopez, R., Cabeza, I.O., Giraldez, I. & Diaz, M.J. (2011). Biofiltration of composting gases using different municipal solid waste-pruning residue composts: Monitoring by using an electronic nose. Bioresource Technology, 102, 17, pp. 7984-7993. DOI:10.1016/j.biortech.2011.05.085
  14. Marycz, M., Rodriguez, Y., Gębicki, J. & Munoz, R. (2022). Systematic comparison of a biotrickling filter and a conventional filter for the removal of a mixture of hydrophobic VOCs by Candida subhashii. Chemosphere, 306, pp. 135608. DOI:10.1016/j.chemosphere.2022.135608
  15. Maurer, D., Bragdon, A., Short, B., Ahn, H. & Koziel, J.A. (2018). Improving environmental odor measurements: Comparison of lab-based standard method and portable odor measurement technology. Archives of Environmental Protection, 44, 2, pp. 100-107. DOI:10.24425/119699
  16. Miller, U., Sówka, I. & Adamiak, W. (2020). The use of surfactant from the Tween group in toluene biofiltration. Archives of Environmental Protection, 46, 2, pp. 53-57. DOI:10.24425/aep.2020.133474
  17. Munoz, R., Sivert, E., Parcsi, G., Lebrero, R., Wang, X., Suffet, I.H. & Stuetz, R.M. (2010). Monitoring techniques for odour abatement assessment. Water Research, 44, 18, pp. 5129-5149. DOI:10.1016/j.watres.2010.06.013
  18. Nagata, E., Yoshio, Y. & Takeuchi, N. (2003). Measurement of Odor Threshold by Triangular Odor Bag Method. Odor measurement review, 118, pp. 118-127.
  19. Pawnuk, M., Szulczyński, B., den Boer, E. & Sówka, I. (2022). Preliminary analysis of the state of municipal waste management technology in Poland along with the identification of waste treatment processes in terms of odor emissions. Archives of Environmental Protection, 48, 3, pp. 3-20. DOI:10.24425/aep.2022.142685
  20. Rolewicz-Kalińska, A., Lelicińska-Serafin, K. & Manczarski, P. (2021). Volatile organic compounds, ammonia and hydrogen sulphide removal using a two-stage membrane biofiltration process. Chemical Engineering Research and Design, 165, pp. 69-80. DOI:10.1016/j.cherd.2020.10.017
  21. Rybarczyk, P. (2022). Removal of Volatile Organic Compounds (VOCs) from Air: Focus on Biotrickling Filtration and Process Modeling. Processes, 10, 12, pp. 2531. DOI:10.3390/pr10122531
  22. Rybarczyk, P., Marycz, M., Szulczyński, B., Brillowska-Dąbrowska, A., Rybarczyk, A. & Gębicki, J. (2021). Removal of cyclohexane and ethanol from air in biotrickling filters inoculated with Candida albicans and Candida subhashii. Archives of Environmental Protection, 47, 1, pp. 26-34. DOI. 10.24425/aep.2021.136445
  23. Rybarczyk, P., Szulczyński, B. & Gębicki, J. (2020). Simultaneous removal of hexane and ethanol from air in biotrickling filter – process performance and monitoring using electronic-nose. Sustainability, 12, 1, pp. 387. DOI:10.3390/su12010387
  24. Rybarczyk, P., Szulczyński, B., Gospodarek, M. & Gębicki, J. (2019). Effects of n-butanol presence, inlet loading, empty residence time and starvation periods on the performance of a biotrickling filter removing cyclohexane vapours from air. Chemical Papers, 74, pp. 1039-1047. DOI:10.1007/s11696-019-00943-2
  25. Sabilla, S.I., Sarno, R. & Siswantoro, J. (2017). Estimating Gas Concentration using Artificial Neural Network for Electronic Nose. Procedia Computer Science, 124, pp. 181-188. DOI:10.1016/j.procs.2017.12.145
  26. Salamanca, D., Dobslaw, D. & Engesser, K-H. (2017). Removal of cyclohexane gaseous emissions using a biotrickling filter system. Chemosphere, 176, pp. 97-107. DOI:10.1016/j.chemosphere.2017.02.078
  27. Schlegelmilch, M., Streese, J. & Stegmann, R. (2005). Odour management and treatment technologies: An overview. Waste Management, 25, 9, pp. 928-939. DOI:10.1016/j.wasman.2005.07.006
  28. Sohn, J.H., Dunlop, M., Hudson, N., Kim, T.I. & Yoo, Y.H. (2009). Non-specific conducting polimer-based array capable of monitoring odour emissions from a Biofiltration system in a piggery building. Sensors and Actuators B: Chemical, 135, 2, pp. 455-464. DOI:10.1016/j.snb.2008.10.007
  29. Szulczyński, B., Gębicki, J. & Namieśnik, J. (2018a). Monitoring and efficiency assessment of biofilter air deodorization using electronic nose prototype. Chemical Papers, 72, pp. 527-532. DOI:10.1007/s11696-017-0310-9
  30. Szulczyński, B., Rybarczyk, P. & Gębicki, J. (2018b). Monitoring of n-butanol vapours biofiltration process using an electronic nose combined with calibration models. Monatshefte fur Chemie, 149, pp. 1693-1699. DOI:10.1007/s00706-018-2243-6
  31. Szulczyński, B., Rybarczyk, P., Gospodarek, M. & Gębicki, J. (2019). Biotrickling filtration of n-butanol vapours: process monitoring using electronic nose and artificial neural network. Monatshefte fur Chemie, 150, pp. 1667-1673. DOI 10.1007/s00706-019-02456-w
  32. Vergara-Fernandez, A., Revah, S., Moreno-Casas, P. & Scott, F. (2018). Biofiltration of volatile organic compounds using fungi and its conceptual and mathematical modeling. Biotechnology Advances, 36, 4, pp. 1079-1093. DOI:10.1016/j.biotechadv.2018.03.008
  33. Wiśniewska, M., Kulig, A. & Lelecińska-Serafin, K. (2020). Olfactometric testing as a method for assessing odour nuisance of biogas plants processing municipal waste. Archives of Environmental Protection, 46, 3, pp. 60-68. DOI:10.24425/aep.2020.134536
  34. Wu, X., Lin, Y., Wang, Y., Wu, S., Li, X. & Yang C. (2022). Enhanced Removal of Hydrophobic Short-Chain n-Alkanes from Gas Streams in Biotrickling Filters in Presence of Surfactant. Environmental Science & Technology, 56, 14, pp. 10349-10360. DOI:10.1021/acs.est.2c02022
  35. Wysocka, I., Gębicki, J. & Namieśnik, J. (2019). Technologies for deodorization of malodorous gases. Environmental Science and Pollution Research, 26, pp. 9409-9434, DOI:10.1007/s11356-019-04195-1
  36. Yang, C., Chen, H., Zeng, G., Yu, G. & Luo, S. (2010). Biomass accumulation and control strategies in gas biofiltration. Biotechnology Advances, 28, 4, pp. 531-540, DOI:10.1016/j.biotechadv.2010.04.002
  37. Yu, G., Wang, G., Wang, S., Yang, C., Chen, H., Zhu, Y., Yu, L., Li, J. & Kazemian, H. (2021). Performance promotion and its mechanism for n-hexane removal in a lab-scale biotrickling filter with reticular polyurethane sponge under intermittent spraying mode. Process Safety and Environmental Protection, 152, pp. 654-662. DOI:10.1016/j.psep.2021.06.029
  38. Zarra, T., Reiser, M., Naddeo, V., Belgiorno, V. & Kranert, M. (2014). Odor Emissions Characterization from Wastewater Treatment Plants by Different Measurement Methods. Chemical Engineering Transaction, 40, pp. 37-42. DOI:10.3303/CET1440007
  39. Zhang, S., Cai. L., Koziel, J.A., Hoff, S.J., Schmidt, D.R., Clanton, C.J., Jacobson, L.D., Parker, D.B. & Heber, A.J. (2010). Field air sampling and simultaneous chemical and sensory analysis of livestock odorants with sorbent tubes and GC-MS/olfactometry. Sensors and Actuators B: Chemical, 146, 2, pp. 427-432. DOI:10.1016/j.snb.2009.11.028
  40. Zhang, Y., Ning, X., Li, Y., Wang, J., Cui, H., Meng, J., Teng, C., Wang, G. & Shang, X. (2021). Impact assessment of odor nuisance, health risk and variation originating from the landfill surface. Waste Management, 126, pp. 771-780. DOI:10.1016/j.wasman.2021.03.055
  41. Arnold, M., Reittu, A., von Wright, A., Martikainen, P.J. & Suihko, M-L. (1997). Bacterial degradation of styrene in waste gases using a peat filter. Applied Microbiology and Biotechnology, 48, pp.738-744. DOI:10.1007/s002530051126
  42. Brattoli, M., De Gannero, G., De Pinto, V., Loiotile, A.D., Lovascio, S. & Penza, M. (2011). Odour detection methods: olfactometry and chemical sensors. Sensors, 11, 5, pp. 5290-5322. DOI:10.3390/s110505290
  43. Buliner, E.A., Koziel, J.A., Cai, L. & Wright, D. (2012). Characterization of livestock odors using steel plates solid-phase microextraction, and multidimensional gas chromatography-mass spectrometry-olfactometry. Journal of the Air & Waste Management Association, 56, 10, pp. 1391-1403. DOI:10.1080/10473289.2006.10464547
  44. Cabeza, I.O., Lopez, R., Giraldez, I., Stuetz, R.M. & Diaz, M.J. (2013). Biofiltration of α-piene vapours using municipal solid waste (MSW) – Pruning residues (P) composts as packing materials. Chemical Engineering Journal, 233, pp. 149-158. DOI:10.1016/j.cej.2013.08.032
  45. Chen, Y., Wang, X., He, S., Zhu, S. & Shen, S. (2016). The performance of a two-layer biotrickling filter filled with new mixed packing materials for the removal of H_2 S from air. Journal of Environmental Management, 165, 1, pp. 11-16. DOI:10.1016/j.jenvman.2015.09.008
  46. Cheng, Y., He, H., Yang, C., Yan, Z., Zeng, G. & Qian, H. (2016a). Effects of anionic surfactant on n-hexane removal in biofilters. Chemosphere, 150, pp. 248-253. DOI:10.1016/j.chemosphere.2016.02.027
  47. Cheng, Y., He, H., Yang, C., Zeng, G., Li, X., Chen, H. & Yu, G. (2016b). Challenges and solutions for biofiltration of hydrophobic volatile organic compounds. Biotechnology Advances, 34, 6, pp. 1091-1102. DOI:10.1016/j.biotechadv.2016.06.007
  48. Cheng, Z., Sun, Z., Zhu, S., Lou, Z., Zhu, N. & Feng, L. (2019). The identification and health risk assessment of odor emissions from waste landfilling and composting. Science of The Total Environment, 649, pp. 1038-1044. DOI:10.1016/j.scitotenv.2018.08.230
  49. Chou, M-S. & Shiu, W-Z. (2011). Bioconversion of Methylamine in Biofilters. Journal of the Air & Waste Management Association, 47, 1, pp. 58-65. DOI:10.1080/10473289.1997.10464408
  50. Fang, J-J., Yang, N., Cen, D-Y., Shao, L-M. & He, P-J. (2012). Odor compounds from different sources of landfill: Characterization and source identification. Waste Management, 32, 7, pp. 1401-1410. DOI:10.1016/j.wasman.2012.02.013
  51. Giungato, P., Gilo, A.D., Palmisani, J., Marzocca, A., Mazzone, A., Brattoli, M., Giua, R. & de Gennaro, G. (2018). Synergistic approaches for odor active compounds monitoring and identification: State of the art, integration, limits and potentialities of analytical and sensorial techniques. Trends in Analytical Chemistry, 107, pp. 116-129. DOI:10.1016/j.trac.2018.07.019
  52. Liang, Z., Wang, J., Zhang, Y., Han, C., Ma, S., Chen, J., Li, G. & An, T. (2020). Removal of volatile organic compounds (VOCs) emitted from a textile dyeing wastewater treatment plant and the attenuation of respiratory health risks using a pilot-scale biofilter. Journal of Cleaner Production, 253, pp. 120019. DOI:10.1016/j.jclepro.2020.120019
  53. Lopez, R., Cabeza, I.O., Giraldez, I. & Diaz, M.J. (2011). Biofiltration of composting gases using different municipal solid waste-pruning residue composts: Monitoring by using an electronic nose. Bioresource Technology, 102, 17, pp. 7984-7993. DOI:10.1016/j.biortech.2011.05.085
  54. Marycz, M., Rodriguez, Y., Gębicki, J. & Munoz, R. (2022). Systematic comparison of a biotrickling filter and a conventional filter for the removal of a mixture of hydrophobic VOCs by Candida subhashii. Chemosphere, 306, pp. 135608. DOI:10.1016/j.chemosphere.2022.135608
  55. Maurer, D., Bragdon, A., Short, B., Ahn, H. & Koziel, J.A. (2018). Improving environmental odor measurements: Comparison of lab-based standard method and portable odor measurement technology. Archives of Environmental Protection, 44, 2, pp. 100-107. DOI:10.24425/119699
  56. Miller, U., Sówka, I. & Adamiak, W. (2020). The use of surfactant from the Tween group in toluene biofiltration. Archives of Environmental Protection, 46, 2, pp. 53-57. DOI:10.24425/aep.2020.133474
  57. Munoz, R., Sivert, E., Parcsi, G., Lebrero, R., Wang, X., Suffet, I.H. & Stuetz, R.M. (2010). Monitoring techniques for odour abatement assessment. Water Research, 44, 18, pp. 5129-5149. DOI:10.1016/j.watres.2010.06.013
  58. Nagata, E., Yoshio, Y. & Takeuchi, N. (2003). Measurement of Odor Threshold by Triangular Odor Bag Method. Odor measurement review, 118, pp. 118-127.
  59. Pawnuk, M., Szulczyński, B., den Boer, E. & Sówka, I. (2022). Preliminary analysis of the state of municipal waste management technology in Poland along with the identification of waste treatment processes in terms of odor emissions. Archives of Environmental Protection, 48, 3, pp. 3-20. DOI:10.24425/aep.2022.142685
  60. Rolewicz-Kalińska, A., Lelicińska-Serafin, K. & Manczarski, P. (2021). Volatile organic compounds, ammonia and hydrogen sulphide removal using a two-stage membrane biofiltration process. Chemical Engineering Research and Design, 165, pp. 69-80. DOI:10.1016/j.cherd.2020.10.017
  61. Rybarczyk, P. (2022). Removal of Volatile Organic Compounds (VOCs) from Air: Focus on Biotrickling Filtration and Process Modeling. Processes, 10, 12, pp. 2531. DOI:10.3390/pr10122531
  62. Rybarczyk, P., Marycz, M., Szulczyński, B., Brillowska-Dąbrowska, A., Rybarczyk, A. & Gębicki, J. (2021). Removal of cyclohexane and ethanol from air in biotrickling filters inoculated with Candida albicans and Candida subhashii. Archives of Environmental Protection, 47, 1, pp. 26-34. DOI. 10.24425/aep.2021.136445
  63. Rybarczyk, P., Szulczyński, B. & Gębicki, J. (2020). Simultaneous removal of hexane and ethanol from air in biotrickling filter – process performance and monitoring using electronic-nose. Sustainability, 12, 1, pp. 387. DOI:10.3390/su12010387
  64. Rybarczyk, P., Szulczyński, B., Gospodarek, M. & Gębicki, J. (2019). Effects of n-butanol presence, inlet loading, empty residence time and starvation periods on the performance of a biotrickling filter removing cyclohexane vapours from air. Chemical Papers, 74, pp. 1039-1047. DOI:10.1007/s11696-019-00943-2
  65. Sabilla, S.I., Sarno, R. & Siswantoro, J. (2017). Estimating Gas Concentration using Artificial Neural Network for Electronic Nose. Procedia Computer Science, 124, pp. 181-188. DOI:10.1016/j.procs.2017.12.145
  66. Salamanca, D., Dobslaw, D. & Engesser, K-H. (2017). Removal of cyclohexane gaseous emissions using a biotrickling filter system. Chemosphere, 176, pp. 97-107. DOI:10.1016/j.chemosphere.2017.02.078
  67. Schlegelmilch, M., Streese, J. & Stegmann, R. (2005). Odour management and treatment technologies: An overview. Waste Management, 25, 9, pp. 928-939. DOI:10.1016/j.wasman.2005.07.006
  68. Sohn, J.H., Dunlop, M., Hudson, N., Kim, T.I. & Yoo, Y.H. (2009). Non-specific conducting polimer-based array capable of monitoring odour emissions from a Biofiltration system in a piggery building. Sensors and Actuators B: Chemical, 135, 2, pp. 455-464. DOI:10.1016/j.snb.2008.10.007
  69. Szulczyński, B., Gębicki, J. & Namieśnik, J. (2018a). Monitoring and efficiency assessment of biofilter air deodorization using electronic nose prototype. Chemical Papers, 72, pp. 527-532. DOI:10.1007/s11696-017-0310-9
  70. Szulczyński, B., Rybarczyk, P. & Gębicki, J. (2018b). Monitoring of n-butanol vapours biofiltration process using an electronic nose combined with calibration models. Monatshefte fur Chemie, 149, pp. 1693-1699. DOI:10.1007/s00706-018-2243-6
  71. Szulczyński, B., Rybarczyk, P., Gospodarek, M. & Gębicki, J. (2019). Biotrickling filtration of n-butanol vapours: process monitoring using electronic nose and artificial neural network. Monatshefte fur Chemie, 150, pp. 1667-1673. DOI 10.1007/s00706-019-02456-w
  72. Vergara-Fernandez, A., Revah, S., Moreno-Casas, P. & Scott, F. (2018). Biofiltration of volatile organic compounds using fungi and its conceptual and mathematical modeling. Biotechnology Advances, 36, 4, pp. 1079-1093. DOI:10.1016/j.biotechadv.2018.03.008
  73. Wiśniewska, M., Kulig, A. & Lelecińska-Serafin, K. (2020). Olfactometric testing as a method for assessing odour nuisance of biogas plants processing municipal waste. Archives of Environmental Protection, 46, 3, pp. 60-68. DOI:10.24425/aep.2020.134536
  74. Wu, X., Lin, Y., Wang, Y., Wu, S., Li, X. & Yang C. (2022). Enhanced Removal of Hydrophobic Short-Chain n-Alkanes from Gas Streams in Biotrickling Filters in Presence of Surfactant. Environmental Science & Technology, 56, 14, pp. 10349-10360. DOI:10.1021/acs.est.2c02022
  75. Wysocka, I., Gębicki, J. & Namieśnik, J. (2019). Technologies for deodorization of malodorous gases. Environmental Science and Pollution Research, 26, pp. 9409-9434, DOI:10.1007/s11356-019-04195-1
  76. Yang, C., Chen, H., Zeng, G., Yu, G. & Luo, S. (2010). Biomass accumulation and control strategies in gas biofiltration. Biotechnology Advances, 28, 4, pp. 531-540, DOI:10.1016/j.biotechadv.2010.04.002
  77. Yu, G., Wang, G., Wang, S., Yang, C., Chen, H., Zhu, Y., Yu, L., Li, J. & Kazemian, H. (2021). Performance promotion and its mechanism for n-hexane removal in a lab-scale biotrickling filter with reticular polyurethane sponge under intermittent spraying mode. Process Safety and Environmental Protection, 152, pp. 654-662. DOI:10.1016/j.psep.2021.06.029
  78. Zarra, T., Reiser, M., Naddeo, V., Belgiorno, V. & Kranert, M. (2014). Odor Emissions Characterization from Wastewater Treatment Plants by Different Measurement Methods. Chemical Engineering Transaction, 40, pp. 37-42. DOI:10.3303/CET1440007
  79. Zhang, S., Cai. L., Koziel, J.A., Hoff, S.J., Schmidt, D.R., Clanton, C.J., Jacobson, L.D., Parker, D.B. & Heber, A.J. (2010). Field air sampling and simultaneous chemical and sensory analysis of livestock odorants with sorbent tubes and GC-MS/olfactometry. Sensors and Actuators B: Chemical, 146, 2, pp. 427-432. DOI:10.1016/j.snb.2009.11.028
  80. Zhang, Y., Ning, X., Li, Y., Wang, J., Cui, H., Meng, J., Teng, C., Wang, G. & Shang, X. (2021). Impact assessment of odor nuisance, health risk and variation originating from the landfill surface. Waste Management, 126, pp. 771-780. DOI:10.1016/j.wasman.2021.03.055
Go to article

Authors and Affiliations

Dominik Dobrzyniewski
1
ORCID: ORCID
Bartosz Szulczyński
1
ORCID: ORCID
Piotr Rybarczyk
1
ORCID: ORCID
Jacek Gębicki
1
ORCID: ORCID

  1. Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
Download PDF Download RIS Download Bibtex

Abstract

This work presents results of investigations on biotrickling filtration of air polluted with cyclohexane co-treated in binary, ternary and quaternary volatile organic compounds (VOCs) mixtures, including vapors of hexane, toluene and ethanol. The removal of cyclohexane from a gas mixture depends on the physicochemical properties of the co-treated VOCs and the lower the hydrophobicity of the VOC, the higher the removal efficiency of cyclohexane. In this work, the performance of biotrickling filters treating VOCs mixtures is discussed based on surface tension of trickling liquid for the first time. A mixed natural – synthetic packing for biotrickling filters was utilized, showing promising performance and limited maintenance requirements. Maximum elimination capacity of about 95 g/(m 3·h) of cyclohexane was reached for the total VOCs inlet loading of about 450 g/(m 3·h). This work presents also a novel approach of combining biological air treatment with management of a spent trickling liquid in the perspective of circular economy assumptions. The waste liquid phase was applied to the plant cultivation, showing a potential for e.g. enhanced production of energetic biomass or polluted soil phytoremediation.
Go to article

Authors and Affiliations

Piotr Rybarczyk
1
ORCID: ORCID
Bartosz Szulczyński
1
ORCID: ORCID
Dominik Dobrzyniewski
1
ORCID: ORCID
Karolina Kucharska
1
ORCID: ORCID
Jacek Gębicki
1
ORCID: ORCID

  1. Gdańsk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, 80-233 Gdańsk, Narutowicza 11/12, Poland

This page uses 'cookies'. Learn more