Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Magnetic-geared permanent magnet (MGPM) electrical machine is a new type of machine by incorporating magnetic gear into PM electrical machine, and it may be in operation with low-speed, high-torque and direct-driven. In this paper, three types of MGPM machines are present, and a quantitative comparison among them is performed by finite element analysis (FEA). The magnetic field distribution, stable torque and back EMF are obtained at no-load. The results show that three types of MGPM machine are suitable for different application fields respectively according to their own advantages, such as high torque and back EMF, which form an important foundation for MGPM electrical machine research.
Go to article

Authors and Affiliations

Xiping Liu
Dong Chen
Liang Yi
Chao Zhang
Min Wang
Download PDF Download RIS Download Bibtex

Abstract

Liquid chromatography-mass spectrometry was used to detect and analyze phenolic compounds in the surface waters of four urban lakes in Xi’an – Hancheng Lake, Xingqing Lake, Nanhu Lake, and Taohuatan Lake. A total of 5 phenolic compounds were detected from the water samples, with a concentration range of ND-100.32 ng/L, of which bisphenol A (BPA) and nonyl phenol (NP) were the main types of phenolic compounds pollution in the four lakes. Pearson correlation analysis was used to analyze the concentration of phenolic compounds in the lake waters of Xi’an City and the water quality indicators COD, TP, NH3-N, DO, and pH during the same period. It was found that there was a significant positive relationship between the concentration of BPA and COD, the concentration of estradiol (17-beta-E2), estrone (E1) and TP and TN, the concentration of octylphenol (4-t-OP) and pH. The ecological risk assessment (ERA) shows that the concentration of BPA, 4-t-OP and NP in the lakes is at a medium risk level( is between 0.1–1), and that of E1 is at a high risk level (is greater than 1). Female cells (breast cancer cells) and male germ cells (testis cells) of mice were used as research objects to explore BPA and NP Toxic effect on mouse germ cells. BPA and NP at a concentration of 10-8 mol/L were found to have the most value-inducing effect on MCF-7 breast cancer cells positive for estrogen receptor. Obviously, both BPA and NP can induce the proliferation of testicular Sertoli cells
Go to article

Bibliography

  1. Atieh, Y., Anis, E. & Kiarash, G. (2022). Quantitative evaluation senx3-regx3 gene of Mycobacterium tuberculosis by real-time RT-PCR assays for monitoring the response to anti-TB therapy. Gene Reports, 28, 101642. DOI:10.1016/j.genrep.2022.101642
  2. Biam, R.S., Robichaud, P.P. & Mbarik M. (2022). Loss of detection of fatty acid-metabolizing proteins in Western blot analyses – Impact of sample heating. Biochemical and Biophysical Research Communications, 607, pp. 110-116. DOI:10.1016/j.bbrc.2022.03.130
  3. Chen, M.H., Guo, M. & Liu D. (2017). Occurrence and distribution of typical endocrine disruptors in surface water and sediments from Taihu Lake and its tributaries. China Environmental Science, 37(11), pp. 4323-4332. (in Chinese)
  4. Diao, P.P., Chen, Q. & Wang R. (2017). Phenolic endocrine-disrupting compounds in the Pearl River Estuary: Occurrence, bioaccumulation and risk assessment. Science of The Total Environment, 584–585, pp. 1100-1107. DOI:10.1016/j.scitotenv.2017.01.169.
  5. Dong, J., Sun, L.N. & Chen, R.H. (2009). A study on the pollution of chlorophenol compounds in the surface water of the pearl river estuary area. Environmental Science & Technology, 32(07), pp. 82-85. (in Chinese)
  6. Duan, X.Y., Li, Y.X. & Li, X.G. (2014). Alkylphenols in surface sediments of the Yellow Sea and East China Sea inner shelf: Occurrence, distribution and fate. Chemosphere, 107, pp. 265-273. DOI:10.1016/j.chemosphere.2013.12.054
  7. Fan, Z.L., Hu, J. & An, W. (2013). Detection and occurrence of chlorinated byproducts of bisphenol A, nonylphenol, and estrogens in drinking water of China: Comparison to the parent compounds. Environmental Science&Technology, 47(19), pp. 10841-10850. DOI:10.1021/es401504a
  8. Hernando, M.D., Mezcua, M. & Fernández-Alba, A.R. (2006). Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta, 69(2), pp. 334-342. DOI:10.1016/j.talanta.2005.09.037
  9. Hodaka, K., Hidekazu, O. & Mayuri I. (2004). Endocrine disrupter nonylphenol and bisphenol A contamination in Okinawa and Ishigaki Islands, Japan––within coral reefs and adjacent river mouths. Chemosphere, 55(11), pp. 1519-1527. DOI:10.1016/j.chemosphere.2004.01.032
  10. Hu, S.L., Ji, J.Y. & Chen, R. (2016). Analysis of eutrophication status and causes of urban landscape water body in xi'an. Environmental Monitoring Management and Technology, 28(05), pp. 62-65.(in Chinese)
  11. Kong, M., Bu Y.Q. & Zhang Q. (2021). Distribution, abundance, and risk assessment of selected antibiotics in a shallow freshwater body used for drinking water. China.Journal of Environmental Management, 280, pp. 111738. DOI:10.1016/j.jenvman.2020.111738
  12. Legler, J., Zeinstra, L.M. & Schuitemaker, F. (2002). Comparison of in vivo and in vitro reporter gene assays for short-term screening of estrogenic activity. Environ Sci Technol, 36(20) , pp. 4410-4415. DOI: 10.1021/es010323a
  13. Li, H.J., Li, H.X. & Shi, X.M. (2019). Pollution charasteristics of heavy metals and ecological risk assessment for the surface sediments of the lakes in Xi’an. Resources And Environment In Arid Areas, 33(02), pp. 122-126. DOI:10.13448/j.cnki.jalre.2019.051.(in Chinese)
  14. Liang, J.J. & Gu, A.H. (2021). Multigenerational and cross-generational effect of environmental endocrine disruptors on reproductive system in male animals. Chinese Journal of Public Health, 37(02), pp. 375-380. (in Chinese)
  15. Liu, Q.,Wang, S. & Xu, J.J. (2017). Analysis of phytoplankton community structure and water quality status in Hancheng Lake, Xi'an. Safety and Environmental Engineering, 24(03), pp. 48-56. DOI:10.13578/j.cnki.issn.1671-1556.2017.03.009. (in Chinese)
  16. Liu, Y.H., Zhang, S.H. & Ji, G.X. (2017). Occurrence, distribution and risk assessment of suspected endocrine-disrupting chemicals in surface water and suspended particulate matter of Yangtze River (Nanjing section). Ecotoxicology and Environmental Safety 135, pp. 90-97. DOI:10.1016/j.ecoenv.2016.09.035
  17. Lv, Y.Z., Zhao, J.L. & Yao, L. (2019). Bioaccumulation of phenolic endocrine disrupting chemicals in the plasma of wild fish from Yangtze River, China. Environmental chemistry. 38(03), pp. 443-453. (in Chinese)
  18. Ministry of Ecology and Environment of the People's Republic of China. (2017). Water quality ---determinnation of the chemical oxygen demand-dichromate method. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201704/t20170410_409547.shtml (in Chinese)
  19. Ministry of Ecology and Environment of the People's Republic of China. (2013). Water quality ---determination of total phosphorus-Flow injection analysis (FIA) and ammonium molybdate spectrophotometry. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201311/t20131106_262959.shtml (in Chinese)
  20. Ministry of Ecology and Environment of the People's Republic of China. (2012). Water quality ---determination of total nitrogen-Alkaline potassium persulfate digestion UV spectrophotometric method. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201203/t20120307_224383.shtml (in Chinese)
  21. Ministry of Ecology and Environment of the People's Republic of China. (2009). Water quality ---determination of ammonia nitrogen-Nessler’s reagent spectrophotometry. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201001/t20100112_184155.shtml (in Chinese)
  22. Ministry of Ecology and Environment of the People's Republic of China.(2009).Water quality ---determination of dissolved oxgen-Electrochemical probe method. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/200911/t20091106_181278.shtml (in Chinese)
  23. Ministry of Ecology and Environment of the People's Republic of China. (2020). Water quality ---determination of pH-Electrode method. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/shjbh/xgbzh/202011/t20201127_810274.shtml (in Chinese)
  24. Ministry of Ecology and Environment of the People's Republic of China. (2009). Water quality sampling---technical regulation of the preservation and handling of samples. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/200910/t20091010_162157.shtml (in Chinese)
  25. Namita, P., Ankita, P. & Mitali, M.S. (2022). A comprehensive review on eco-toxicity and biodegradation of phenolics: Recent progress and future outlook. Environmental Technology & Innovation, 27, 102423. DOI:10.1016/j.eti.2022.102423.
  26. Peranandam, T., Kulanthaivel, L. & Shanmugam, V. (2014). Efficiency of lycopene against reproductive and developmental toxicity of Bisphenol A in male Sprague Dawley rats. Biomedicine & Preventive Nutrition, 4(4), pp. 491-498. DOI:10.1016/j.bionut.2014.07.008
  27. Qiu, L.N., Yun, X. & Na, G.S. (2015). On the bioaccumulation and biomagnification of phenols endocrine disruptors in the organisms in the coast of Northern Yellow Sea. Journal of Safety and Environment, 15(04), pp. 353-357. DOI:10.13637/j.issn.1009-6094.2015.04.074.(in Chinese)
  28. Schultis T. & Metzger J.W. (2004). Determination of estrogenic activity by LYES-assay (yeast estrogen screen-assay assisted by enzymatic digestion with lyticase). Chemosphere, 57(11), pp. 1649-1655. DOI:10.1016/j.chemosphere.2004.06.027
  29. Standnicka, J., Schirmer, K. & Ashauer, R. (2012). Predicting concentrations of organic chemicals in fish by using toxicokinetic models. Environmental Science &Technology, 46(6), pp. 3273-3280. DOI:10.1021/es2043728
  30. Sui, Q., Huang, J. & Yu, G. (2009). Priority Analysis for Controlling Endocrine Disrupting Chemicals in Municipal Wastewater Treatment Plants of China. Environmental Science, 30(02), pp. 384-390. DOI:10.13227/j.hjkx.2009.02.013. (in Chinese)
  31. Sun, Y., Huang, H. & Hu, H.Y. (2010). Concentration and Ecological Risk Level of Estrogenic Endocrine-Disrupting Chemicals in the Effluents from Wastewater Treatment Plants. Environmental Science Research, 23(12), pp. 1488-1493. DOI:10.13198/j.res.2010.12.46.suny.005. (in Chinese)
  32. Takuo, K. & Kunio, K. (1996). Studies on the mechanism of toxicity of chlorophenols found in fish through quantitative structure-activity relationships. Water Research, 30(2), pp. 393-399. DOI:10.1016/0043-1354(95)00152-2
  33. Tan, R.J., Li, Z.S. & Liu, R.X. (2015). PContamination Level of Endocrine Disrupting Compounds in Natural Aquatic Environment. Anhui Agricultural Sciences, 43(23), 167-169+288. DOI:10.13989/j.cnki.0517-6611.2015.23.067. (in Chinese)
  34. Tanaka, H., Yakou, Y. & Takahashi, A. (2001). Comparison between estrogenicities estimated from DNA recombinant yeast assay and from chemical analyses of endocrine disruptors during sewage treatment. Water Sci Technol, 43 (2), pp. 125-132. DOI:10.2166/wst.2001.0081
  35. Tao, S.Y., Wang, L.H. & Zhu, Z.L. (2019). Adverse effects of bisphenol A on Sertoli cell blood-testis barrier in rare minnow Gobiocypris rarus. Ecotoxicology and Environmental Safety, 171, pp. 475-483. DOI:10.1016/j.ecoenv.2019.01.007
  36. Tülay, A.Ö., Önder, H.Ö. & Songül, Z.B. (2002). Removal of phenolic compounds from rubber–textile wastewaters by physico-chemical methods. Chemical Engineering and Processing. Process Intensification, 41(8), pp. 719-730. DOI:10.1016/S0255-2701(01)00189-1
  37. Wang, W. & Kurunthachalam, K. (2018). Inventory, loading and discharge of synthetic phenolic antioxidants and their metabolites in wastewater treatment plants. Water Research, 129, pp. 413-418. DOI:10.1016/j.watres.2017.11.028
  38. Wang, Z, Yang, XH, Fan, D.L. (2017). Ecological Risk Assessment of Triclocarban in Fresh Water of China by Species Sensitivity Distribution. Journal of Ecology and Rural Environment, 33(10), pp. 921-927. (in Chinese)
  39. Wei, H., Wang, J.W. & Yang, X.Y. (2017). Contamination characteristic and ecological risk of antibiotics in surface water of the Weihe Guanzhong section. China Environmental Science, 37(6), pp. 2255-5562. (in chinese)
  40. Yang, M.F., Zou, Y.Q. & Wang, X. (2022). Synthesis of intracellular polyhydroxyalkanoates (PHA) from mixed phenolic substrates in an acclimated consortium and the mechanisms of toxicity. Journal of Environmental Chemical Engineering, 10, (3), 107944. DOI:10.1016/j.jece.2022.107944.
  41. Yin, W., Fan, D.L. & Wang, Z. (2020). Pollution Characteristics and Ecological Risks of 7 Phenolic Compounds of High Concern in the Surface Water and Sediments of Tianjin, China. Asian Journal of Ecotoxicology, 15(01), pp. 230-241. (in Chinese)
  42. Yoel, S., Ann, S. & Monica, S. (2018). The influence of in vivo exposure to nonylphenol ethoxylate 10 (NP-10) on the ovarian reserve in a mouse model. Reproductive Toxicology, 81, pp. 246-252. DOI:10.1016/j.reprotox.2018.08.020
  43. Yousefi, H., Yahyazadeh, A. & Moradi Rufchahi, E.O. (2013). Spectral properties, biological activity and application of new 4-(benzyloxy)phenol derived azo dyes for polyester fiber dyeing. Journal of Molecular Liquids, 180, pp. 51-58. DOI:10.1016/j.molliq.2012.12.030
  44. Zhang, F., Lu, X. & Yang, X.H. (2017). Investigation Report on Water Environment of Hancheng Lake in Xi’an City. Journal of Xi'an University(Natural Science Edition), 20(05), 109-112, 117. (in Chinese)
  45. Zhang, Y.B. (2016). Application of fuzzy comprehensive evaluation method to the assessment of surface water environment quality with the example of surface water environment in Xi’an Qujiang Pool. Journal of Xi'an Shiyou University(Social Science Edition), 25(04), pp. 1-6. (in Chinese)
  46. Zhou, L.J., Ying, G.G. & Liu, S. (2012). Simultaneous determination of human and veterinary antibiotics in various environmental matrices by rapid resolution liquid chromatography electrospray ionization tandem mass spectrometry. Journal of Chromatography A, 1244, pp. 123-138 .DOI:10.1016/j.chroma.2012.04.076
Go to article

Authors and Affiliations

Min Wang
1
Yutong Zhang
1
Jingxin Sun
1
Chen Huang
1
Hongqin Zhai
1

  1. Xi’an University of Technology, China

This page uses 'cookies'. Learn more