Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Function of duck (Anas platyrhynchos) major histocompatibility complex class I (Anpl-MHC I) molecules in binding peptides is through the peptide binding groove (PBG), which is thought to be influenced by the high polymorphism of α1 and α2 domains. However, little is known about the polymorphism of Anpl-MHC I peptide binding domain (PBD), especially in the domestic duck. Here, we analyzed the polymorphism of forty-eight Anpl-MHC I α1 and α2 domains from domestic duck breeds previously reported. All sequences were analyzed through multiple sequence alignment and a phylogenetic tree was constructed. The coefficient of variance of the peptide binding domains (PBDs) from WS, CV, JD, and SX duck breeds was estimated based on the Wu-Kabat variability index, followed by the location of the highly variable sites (HVSs) on reported crystal structure models. Analysis of α1 and α2 domains showed common features of classical MHC class I and high polymorphism, especially in α1 domain. The constructed phylogenetic tree showed that PBDs of domestic ducks did not segregate based on breeds and had a close phylogenetic relationship, even with wild ducks. In each breed, HVSs were mostly located in the PBG, suggesting that they might determine peptide-binding characteristics and subsequently influence peptide presentation and recognition. The combined results of sequence data and crystal structure provide novel valuable insights into the polymorphism and diversity of Anpl-MHC I PBDs that will facilitate further studies on disease resistance differences between duck breeds and the development of cytotoxic T-lymphocyte (CTL) epitope vaccines suited for preventing diseases in domestic ducks.

Go to article

Authors and Affiliations

S. Yu
J. Wu
J. Bai
Y. Ding
W. Qiu
L. Zhang
Download PDF Download RIS Download Bibtex

Abstract

Phosphorothioate CpG oligodeoxynucleotides (ODN) are reported to be recognized by the membrane-bound TLR9 and trigger the MyD88-dependent up-regulation of Type I interferons and pro-inflammatory cytokines. Whether plasmids containing multiple CpG motifs stimulate the same signaling pathway is yet to be determined. The present results show that the CpG motifs enrich plasmid pUC18-CpG stimulates RAW 264.7 in vitro, mainly through the TBK1-mediated signaling pathway, causing the up-regulation of IFN-β, and pro-inflammatory cytokines TNF-α and IL-6. When pUC18-CpG is co-administered with the recombinant Echinococcus granulosus antigen, the antigen-specific antibody titers are markedly increased compared to the Quil-A adju- vanted group. Antigen specific cytokine quantification shows that cytokine profiles from the pUC18-CpG adjuvanted-group are switched to a Th1-biased immune response.

Go to article

Authors and Affiliations

J. Wu
Q. Chen
T. Xin
Y. Sun
H. Jia
S.H. Hou
X.Y. Guo

This page uses 'cookies'. Learn more