Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Natural fibres have recently gained attention as an alternative sustainable material for civil engineering applications due to natural fibres’ exceptional performance, including high strength, and their environmental-friendliness and cost-effectiveness. However, there are disadvantages to using natural fibres in extreme environments. Therefore, this paper reviewed the effect of moisture content and temperature on the tensile strength of potential natural fibres for engineering purposes. Furthermore, this paper also critically reviewed the influence of alkaline treatment on natural fibres’ tensile strength. This is significant because alkaline treatment enhances surface friction and the fraction of the revealed cellulose on the fibres’ surface, resulting in better mechanical interlocking. In conclusion, natural fibres demonstrate their potential for geotechnical applications due to the materials’ strong tensile properties after being subjected to treatment processes.
Go to article

Authors and Affiliations

Nur Faezah Yahya
1
ORCID: ORCID
T.N.H.T Ismail
1
ORCID: ORCID
Fatimah Mohamed Yusop
1
ORCID: ORCID
Norul Ahsanah Aulia Mohamad Mahani
1
ORCID: ORCID
Alia Farhana Malik
1
ORCID: ORCID
L.A. Sofri
2
ORCID: ORCID
Joanna Gondro
3
ORCID: ORCID

  1. Universiti Tun Hussein Onn Malaysia, Faculty of Engineering Technology, 84600 Panchor, Johor, Malaysia
  2. Universiti Malaysia Perlis (UniMAP), Centre of Excellence Geopolymer & Green Technology (CEGeoGTech), 01000 Perlis, Malaysia
  3. Częstochowa University of Technology, Faculty of Production Engineering and Materials Technology, Department of Physics, 19 Armii Krajowej Av., 42-200 Częstochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

The performance of adsorbent synthesized by alkali activation of aluminosilicate precursor metakaolin with sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) as well as the foaming agent was studied for copper ions adsorption from aqueous solution. This paper investigated the effect of adding hydrogen peroxide (H2O2) and aluminium powder as foaming agents to an alkali activated materials slurry. The experimental range included 0.50 wt%, 0.75 wt%, and 1.00 wt% hydrogen peroxide and 0.02 wt%, 0.04 wt%, and 0.06 wt% aluminium powder. A control sample without a foaming agent was also created for comparison. The specific surface area, water absorption, density, compressive strength and microstructure of metakaolin based alkali activated materials were evaluated. The adsorption capability of Cu2+ with addition of hydrogen peroxide and aluminium powder was then tested. Results indicate hydrogen peroxide addition had superior pore size distribution and homogeneous porosity than aluminium powder, implying improved copper ion elimination. Cu2+ adsorption capability reached 98% with 0.75 wt% hydrogen peroxide and 24.6076 m2/g surface area. The results demonstrating that low cost metakaolin-based AAMs are the most effective adsorbent for removing copper ions.
Go to article

Authors and Affiliations

M. Ibrahim
1 2
ORCID: ORCID
W.M.W. Ibrahim
2 3
ORCID: ORCID
M.M. Al B. Abdullah
1 2
ORCID: ORCID
L.H. Mahamud
1
ORCID: ORCID
M.N.N. Tajuddin
1
ORCID: ORCID
Nur Faezah Yahya
ORCID: ORCID

  1. Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Taman Muhibbah, Jejawi, 02600 Arau, Perlis, Malaysia
  2. Universiti Malaysia Perlis (UniMAP), Center of Excellence Geopolymer & Green Technology (CeGeoGTech), 02600, Arau, Perlis, Malaysia
  3. Universiti Malaysia Perlis (UniMAP), Faculty of Mechanical Engineering Technology, 02600, Arau, Perlis, Malaysia

This page uses 'cookies'. Learn more