Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The Euler multiphase flow and population equilibrium model were used to simulate the three-phase flow field in the bubble expansion stage of the outlet curved pipe section. The influence of the ratio of the bending diameter and the volume fraction of the gas phase on the pressure loss is revealed, and the safety range of the optimum bending diameter ratio and the volume fraction of the outlet gas phase is determined. The results show that the three-phase flow in the tube is more uniformly distributed in the vertical stage, and when the pipe is curved, the liquid-phase close to the pipe wall gathers along the pipe flank to the outside of the pipe, the solid phase is transferred along the pipe flank to the inside of the pipe, and the gas phase shrinks along the pipe flank to the inner centre. The maximum speed of each phase of the three-phase flow in the elbow is at the wall of the tube from 45° to 60° inside the elbow, and the distribution law along the axial direction of the pipe is about the same as the distribution law of volume fraction. The pressure loss of the elbow decreases with the increase of the bend diameter ratio, when the bend diameter ratio increases to 6, the pressure loss of the pipe decreases sharply, and the pressure loss decreases slowly with the increase of the bend diameter ratio. When the gas phase volume score in the elbow reaches 70%, there will be an obvious wall separation phenomenon, to keep the system in a stable working state and prevent blowout, the gas phase volume score should be controlled within 60%.
Go to article

Authors and Affiliations

Wei Chen
1 2 3
ORCID: ORCID
Hai-liang Xu
2 3
ORCID: ORCID
Bo Wu
2 3
ORCID: ORCID
Fang-qiong Yang
2 3
ORCID: ORCID

  1. Hunan University of Humanities, Department of Energy and Electrical Engineering, Science and Technology, Loudi, Hunan 417000, China
  2. Central South University, School of Mechanical and Electrical Engineering, Changsha, Hunan 410083, China
  3. State Key Laboratory of High Performance Complex Manufacturing, Changsha, Hunan 410083, China
Download PDF Download RIS Download Bibtex

Abstract

In the present research, the Nb-Si-Ti-Cr-Al-Ta-Hf alloys with different Ho addition were prepared. Their microstructure, compressive properties and oxidation behaviors were investigated preliminarily. The results exhibit that the Nb-Si-Ti-Cr-Al-Ta-Hf alloy has coarse microstructure which is mainly composed of Nb solid solution, Nb5Si3 and Ti5Si3 phases. The minor Ho addition could refine the microstructure and suppress the precipitation of Ti5Si3 phase. Moreover, the Ho addition also leads to the formation of Ho2Hf2O7, which prefers to precipitate along the Nbss/Nb5Si3 phase interface. Compared with the Nb-Si-Ti-Cr-Al-Ta-Hf alloy, the minor Ho addition improves the room-temperature and high-temperature compressive properties of the alloy. Its room-temperature compressive strength and ductility obtain the maximum value of 1825 MPa and 16.5% when the Ho content is 0.1 at.%. Moreover, its best compressive strength at 873 K, 1273 K and 1473 K is 1495 MPa, 765 MPa and 380 MPa, respectively, when the Ho addition is 0.1 at.%. The oxidation behavior of the Nb-Si-Ti-Cr-Al-Ta-Hf alloy is diversified with the Ho addition. The oxidation rate of the alloy with 0.1 at.% Ho addition is the lowest while the alloy with 0.2 at.% Ho addition is the highest. Therefore, the 0.1 at.% Ho would be the appropriate content for the Nb-Si-Ti-Cr-Al-Ta-Hf alloy.
Go to article

Authors and Affiliations

Qiaoli Wang
1
ORCID: ORCID
Yinan Xiao
2
ORCID: ORCID
Di Wu
2
ORCID: ORCID
Fang Yang
ORCID: ORCID
L.Y Sheng
ORCID: ORCID

  1. Peking University, Shenzhen Institute, Shenzhen 518057, China; PKU-HKUST ShenZhen-HongKong Institution, Shenzhen 518057, China
  2. PKU-HKUST ShenZhen-HongKong Institution, Shenzhen 518057, China

This page uses 'cookies'. Learn more