Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the last phase of Franciszek Karpiński's life as a writer (the first quarter of the 19th century), he practically gave up poetry and concentrated instead on writing memoirs. This article tries to find out to what extent his autobiographical work, especially his Historia mego wieku i ludzi, z którymi żyłem [A History of My Century and the People with Whom I Lived], is influenced by an attitude characteristic of the sentimentalism of the previous century. As this analysis shows Karpiński's narrative exhibits both a sensitivity much indebted to Rousseau's autobiographical method and skilful shifts of tone, from satire and irony to various shades of melancholy. For sentimentalist aesthetic and poetics the continual manipulation of tone is a means of alerting the reader to the world's complexity. As in the novels of Lawrence Sterne, that complexity is experienced by way of careful observation of fragments of reality, defined by the subjectivity of the observer and the truth of his emotions.

Go to article

Authors and Affiliations

Grzegorz Zając
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

From its beginnings – in Poland it was the second half of the 18th century – the novel, a genre that eluded the distinctions of traditional normative poetics, had to face all kinds of strictures, not only in the sphere of aesthetics. At the same time, due to its innovatory representation of reality and its effectiveness as a tool of persuasion, it aroused a genuine interest among the enlightened elites. This positive attitude appears to have been shared by Ignacy Krasicki, whose work (not excepting novels) was generally regarded as a model of unparalleled literary excellence. This article re-examines his achievement as a novelist and discusses at greater length his first novel Mikołaja Doświadczyńskiego przypadki. Published in 1776, it was the first Polish novel and the most interesting example of early realistic fiction until the appearance in 1815 of Dwaj panowie Sieciechowie by Julian Ursyn Niemcewicz.
Go to article

Authors and Affiliations

Grzegorz Zając
1
ORCID: ORCID

  1. Uniwersytet Jagielloński, Kraków
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of the analysis of the content of selected heavy metals in used engine oils collected in car service stations during oil change. The main purpose of the research was to determine the difference in heavy metal content (Cr, Cu, Fe, Ni, Pb, Zn, Hg, Cd) depending on the engine type and oil change interval. The analysis comprised 80 samples of used engine oils obtained from passenger cars. The content of heavy metals was tested with use of the HDMaxine analyzer, operating on the basis of HDXRF (High-Definition X-Ray Fluorescence). Upon analyzing the differences in the average content of the examined elements, depending on the type of engine, it can be concluded that in oils coming from diesel engines the following elements showed a higher concentration – Cr (three times), Fe (1/3 times ), Ni (two times), Pb (1/2 times), whereas in oils coming from gasoline engines, only the average Cu content was higher (¾ times). Zinc had a comparable level of concentration. The multi-factor analysis of variance showed that in diesel engines the levels of Fe, Cr, Pb and Ni are statistically significantly different than in the reference group of gasoline engines. The study findings suggest that, depending on the engine type, the content of selected heavy metal elements in used oils varies. Therefore, to ensure proper handling of waste oils and reduce environmental risk, selective collection of used oils depending on the engine type may definitely be considered.
Go to article

Bibliography

  1. Bogacki, J. P. & Al-Hazmi, H. (2017). Automotive fleet repair facility wastewater treatment using air/ZVI and air/ZVI/H2O2 processes. Archives of Environmental Protection, 43(3), pp. 24–31, DOI: 10.1515/aep-2017-0024
  2. Boughton, B. & Horvath, A. (2004). Environmental Assessment of Used Oil Man-agement Methods. Environmental Science & Technology, 38(2), pp. 353–358, DOI: 10.1021/es034236p
  3. Cassap, M. (2008). The analysis of used lubrication oils by inductively coupled plas-ma spectrometry for predictive maintenance. Spectroscopy Europe, 20(1), pp. 17–20,
  4. Delistraty, D. & Stone, A. (2007). Dioxins, metals, and fish toxicity in ash residue from space heaters burning used motor oil. Chemosphere, 68(5), pp. 907–914,
  5. Elnajjar, E., Al Omari, S. A. B., Hamdan, M. O., Ghannam, M. & Selim, M. Y. E. (2019). Characteristics of external furnace combustion of used lube oil with different percentages of diethyl ether additives burned with liquefied petroleum gas. Biofuels. Scopus, DOI: 10.1080/17597269.2019.1608035
  6. Hamawand, I., Yusaf, T. & Rafat, S. (2013). Recycling of Waste Engine Oils Using a New Washing Agent. Energies, 6(2), pp. 1023–1049, DOI: 10.3390/en6021023
  7. Hsu, Y.-L. & Liu, C.-C. (2011). Evaluation and selection of regeneration of waste lu-bricating oil technology. Environmental Monitoring and Assessment, 176(1), pp. 197–212, DOI: 10.1007/s10661-010-1576-3
  8. Jafari, A. J. & Hassanpour, M. (2015). Analysis and comparison of used lubricants, regenerative technologies in the world. Resources, Conservation and Recycling, 103, pp. 179–191, DOI: 10.1016/j.resconrec.2015.07.026
  9. Kabata-Pendias, A. & Pendias, H. (1999). Biochemistry of Trace Elements. PWN –Polish Scientific Publishers, Warszawa. (in Polish),
  10. Kamal, A. & Khan, F. (2009). Effect of extraction and adsorption on re-refining of used lubricating oil. Oil & Gas Science and Technology-Revue de l’IFP, 64(2), pp. 191–197,
  11. Kashif, S.-R., Zaheer, A., Arooj, F. & Farooq, Z. (2018). Comparison of heavy metals in fresh and used engine oil. Petroleum Science and Technology, 36(18), pp. 1478–1481, DOI: 10.1080/10916466.2018.1496105
  12. Klojzy-Karczmarczyk, B. (2013). Analysis of long-term research on mercury content in the soils in the immediate surroundings of the southern ring road of Krakow. Rocznik Ochrona Srodowiska, 15, pp. 1053–1069,
  13. Kryłów, M., Kwaśny, J. A. & Balcerzak, W. (2018). Oily wastewater treatment using a zirconia ceramic membrane – a literature review. Archives of Environmental Protection, 44(3), pp. 3–10, DOI: 10.24425/aep.2018.122293
  14. Kupareva, A., Mäki-Arvela, P. & Murzin, D. Yu. (2013). Technology for rerefining used lube oils applied in Europe: a review. Journal of Chemical Technology & Biotechnology, 88(10), pp. 1780–1793, DOI: 10.1002/jctb.4137
  15. Lam, S. S., Liew, R. K., Jusoh, A., Chong, C. T., Ani, F. N. & Chase, H. A. (2016). Progress in waste oil to sustainable energy, with emphasis on pyrolysis techniques. Renewa-ble and Sustainable Energy Reviews, 53, pp. 741–753, DOI: 10.1016/j.rser.2015.09.005
  16. Lynch, T. R. (2007). Process chemistry of lubricant base stocks. CRC Press,
  17. Magiera, J. (2006). Re-refining used oil. WN-T, Warszawa. (in Polish),
  18. Magiera, J. & Głuszek, A. (2009). Used-oils - the rules of collection and ecological utilization. Polish Journal of Environmental Studies, 18(3A), pp. 230–235,
  19. Morkunas, I., Woźniak, A., Mai, V. C., Rucińska-Sobkowiak, R. & Jeandet, P. (2018). The Role of Heavy Metals in Plant Response to Biotic Stress. Molecules, 23(9), DOI: 10.3390/molecules23092320
  20. Nerin, C., Domeño, C., Ignacio Garcia, J. & del Alamo, A. (1999). Distribution of Pb, V, Cr, Ni, Cd, Cu and Fe in particles formed from the combustion of waste oils. Chemosphere, 38(7), pp. 1533–1540, DOI:10.1016/S0045-6535(98)00373-7
  21. Nerı́n, C., Domeño, C., Moliner, R., Lázaro, M. J., Suelves, I. & Valderrama, J. (2000). Behaviour of different industrial waste oils in a pyrolysis process: metals distribution and valuable products. Journal of Analytical and Applied Pyrolysis, 55(2), pp. 171–183, DOI: 10.1016/S0165-2370(99)00097-2
  22. Nukman, Sipahutar, R., Taufikurrahman, Asmadi, & Surya, I. (2018). Used lubricating oil as a fuel for smelting waste aluminum. ARPN Journal of Engineering and Applied Sciences, 13(10), pp. 3412–3417. Scopus,
  23. Nwosu, F. O., Olu-Owolabi, B. I., Adebowale, K. O. & Leke, L. (2008). Comparative Investigation of Wear Metals in Virgin and Used Lubricant Oils. Terrestrial and Aquatic Environmental Toxicology, 2(1), pp. 38–43,
  24. Osman, D. I., Attia, S. K. & Taman, A. R. (2018). Recycling of used engine oil by different solvent. Egyptian Journal of Petroleum, 27(2), pp. 221–225, DOI: 10.1016/j.ejpe.2017.05.010
  25. Palkendo, J. A., Kovach, J. & Betts, T. A. (2013). Determination of Wear Metals in Used Motor Oil by Flame Atomic Absorption Spectroscopy. Journal of Chemical Education, 91, pp. 579–582, DOI: 10.1021/ed4004832
  26. Pawlak, Z., Urbaniak, W., Kaldonski, T. & Styp-Rekowski, M. (2010). Energy con-servation through recycling of used oil. Ecological Engineering, 36(12), pp. 1761–1764, DOI: 10.1016/j.ecoleng.2010.08.007
  27. Piecuch, T., Andriyevska, L., Dąbrowski, J., Dąbrowski, T., Juraszka, B. & Kowalczyk, A. (2015). Treatment of Wastewater from Car Service Station. Rocznik Ochrona Środowiska, 17, pp. 814–832,
  28. Pinheiro, C. T., Quina, M. J. & Gando-Ferreira, L. M. (2020). Management of waste lubricant oil in Europe: A circular economy approach. Critical Reviews in Environmental Science and Technology, pp. 1–36, DOI: 10.1080/10643389.2020.1771887
  29. Salem, S., Salem, A. & Babaei, A. A. (2015). Application of Iranian nano-porous Ca-bentonite for recovery of waste lubricant oil by distillation and adsorption techniques. Journal of Industrial and Engineering Chemistry, 23, pp. 154–162, DOI: 10.1016/j.jiec.2014.08.009
  30. Sanchez-Hernandez, A. M., Martin-Sanchez, N., Sanchez-Montero, M. J., Izquierdo, C. & Salvador, F. (2020). Different options to upgrade engine oils by gasification with steam and supercritical water. The Journal of Supercritical Fluids, 164, pp. 104912, DOI: 10.1016/j.supflu.2020.104912
  31. Śpiewak, R. & Piętowska, J. (2006). Nickel-allergen unique. From the structure of the atom to legal regulations. Alergol. Immunol, 3, pp. 3–4,
  32. Srivastava, V., Sarkar, A., Singh, S., Singh, P., de Araujo, A. S. F. & Singh, R. P. (2017). Agroecological Responses of Heavy Metal Pollution with Special Emphasis on Soil Health and Plant Performances. Frontiers in Environmental Science, 5, pp. 64, DOI: 10.3389/fenvs.2017.00064
  33. Stout, S. A., Litman, E. & Blue, D. (2018). Metal concentrations in used engine oils: Relevance to site assessments of soils. Environmental Forensics, 19(3), pp. 191–205,
  34. Swartjes, F. A. (2011). Introduction to Contaminated Site Management. [In] F. A. Swartjes (Ed.), Dealing with Contaminated Sites: From Theory towards Practical Application (pp. 3–89). Springer Netherlands, DOI: 10.1007/978-90-481-9757-6_1
  35. Tóth, G., Hermann, T., Da Silva, M. & Montanarella, L. (2016). Heavy metals in ag-ricultural soils of the European Union with implications for food safety. Environment International, 88, pp. 299–309,
  36. US Department of Energy. (2006). Used oil re-refining study to address energy policy act of 2005, section 1838,. Office of Fossil Energy, https://fossil.energy.gov/epact/used_oil_report.pdf
  37. Vazquez-Duhalt, R. (1989). Environmental impact of used motor oil. Science of the Total Environment, 79(1), pp. 1–23,
  38. Vwioko, D. E., Anoliefo, G. O. & Fashemi, S. D. (2006). Metal concentration in plant tissues of Ricinus communis L. (Castor oil) grown in soil contaminated with spent lubricating oil. Journal of Applied Sciences and Environmental Management, 10(3), pp. 127–134, DOI: 10.4314/jasem.v10i3.17331
  39. Wolak, A., Zając, G. & Gołębiowski, W. (2019). Determination of the content of metals in used lubricating oils using AAS. Petroleum Science and Technology, 37(1), pp. 93–102, DOI: 10.1080/10916466.2018.1511584
  40. Zając, G., Szyszlak-Bargłowicz, J., Słowik, T., Kuranc, A. & Kamińska, A. (2015). Designation of Chosen Heavy Metals in Used Engine Oils Using the XRF Method. Polish Journal of Environmental Studies, 24(5), pp. 2277–2283, DOI: 10.15244/pjoes/58781
Go to article

Authors and Affiliations

Joanna Szyszlak-Bargłowicz
1
Grzegorz Zając
2
Artur Wolak
3

  1. University of Life Sciences in Lublin, Poland
  2. University of Life Sciences in Lublin
  3. Cracow University of Economics, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to evaluate the biochemical possibilities of converting waste lignocellulosic biomass to second generation bioethanol. Three substrates were used in the research: barley straw, rye straw and triticale straw. In the first stage of the research bacterial strains capable of converting waste biomass to produce sugars used to produce energy-useful ethanol were selected. Of the eight strains isolated the three with the highest potential were selected on the basis of activity index value. The raw materials were subjected to enzymatic hydrolysis using the simultaneous saccharifi cation and fermentation method (SSF process). Based on the conducted research, it was found that the examined waste biomass is suitable for the production of cellulosic bioethanol. As a result of distillation 10% and 15% (v/v) ethanol was obtained, depending on the strain and the type of raw material. It was demonstrated that the bacterial strain had a greater impact on the effectiveness of the process than the type of straw used.
Go to article

Authors and Affiliations

Małgorzata Hawrot-Paw
1
Adam Koniuszy
1
Grzegorz Zając
2
Joanna Szyszlak-Bargłowicz
2
Julia Jaklewicz
1

  1. West Pomeranian University of Technology, Department of Renewable Energy Engineering, Poland
  2. University Of Life Sciences in Lublin, Department of Power Engineering and Transportation, Poland

This page uses 'cookies'. Learn more