Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Alternating current a.c. measurements enable to understand the physical and chemical processes occurring in semiconductor materials. Impedance spectroscopy has been successfully applied to study the responses of gas sensors based on metal oxides, such as TiO2, SnO2 and TiO2/SnO2 nanocomposites. This work is devoted to dynamic measurements of hydrogen sensor behaviour over the temperature range of 300–450◦C. Frequency dependence of the impedance signal gives evidence that 50 mol% TiO2/50 mol% SnO2 nanocomposites should be treated as resistive-type sensors. Temporal evolution of the response to 500 ppm H2 at 320◦C indicates a very short response time and much longer recovery.

Go to article

Authors and Affiliations

Bartłomiej Szafraniak
Anna Kusior
Marta Radecka
Katarzyna Zakrzewska
Download PDF Download RIS Download Bibtex

Abstract

An array consisting of four commercial gas sensors with target specifications for hydrocarbons, ammonia, alcohol, explosive gases has been constructed and tested. The sensors in the array operate in the dynamic mode upon the temperature modulation from 350°C to 500°C. Changes in the sensor operating temperature lead to distinct resistance responses affected by the gas type, its concentration and the humidity level. The measurements are performed upon various hydrogen (17-3000 ppm), methane (167-3000 ppm) and propane (167-3000 ppm) concentrations at relative humidity levels of 0-75%RH. The measured dynamic response signals are further processed with the Discrete Fourier Transform. Absolute values of the dc component and the first five harmonics of each sensor are analysed by a feed-forward back-propagation neural network. The ultimate aim of this research is to achieve a reliable hydrogen detection despite an interference of the humidity and residual gases.
Go to article

Authors and Affiliations

Patryk Gwiżdż
Andrzej Brudnik
Katarzyna Zakrzewska

This page uses 'cookies'. Learn more