Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In general, Antarctic marine bacteria are small, with biovolumes ranging from 0.139 to 0.204 μm-3 cell-1, but their total biomass in seawater is considerable due to relatively high numbers that approximate to 1020 cells km-3. Bacterial biomass becomes more concentrated closer to land. Our multi-year Antarctic studies demonstrated an average total bacterial biomass of 504 tons in Admirality Bay (24 km3) or 21 tons per 1 km3, versus 6.4 tons per 1 km3 in the open ocean. Strikingly, bacterial biomass reached 330 tons per 1 km3 of seawater at the sea-ice edge, as sampled in Goulden Cove in Admiralty Bay. Bacterial biomass in Admirality Bay, which we believe can be enriched by halotolerant and thermotolerant fresh water bacteria from glacial streams, is equal to or even exceeds that of the standing stock of krill (100-630 tons per bay) or other major living components, including phytoplankton (657 tons), flagellates (591 tons), and ciliates (412 tons). However, the bacterial biomass is exceeded by several orders of magnitude by non-living organic matter, which constitutes the basic bacterial carbon source. Factors regulating high bacterial abundance in the vicinity of land are discussed.

Go to article

Authors and Affiliations

Marek K. Zdanowski
Download PDF Download RIS Download Bibtex

Abstract

Numbers of saprophytic bacteria were determined by the plate count in samples obtained at 45 oceanographic stations, from six standard depths between 10 and 150 m. Depending on the sampling place, the numbers of bacteria fluctuated between 0.8 x 102 to 4.3 x l 04 x 1-1 and 1.2 x l07 to 1.3 x 108, in a water column under 1 m2 sea surface. Most of saprophytic bacteria were observed at stations located south and south-east of the King George Island, and also north and north-west of the Anvers Island. Fewer numbers were found in areas of large krill swarms in the Bransfield Strait, between 58°30' and 62°30' W, and in the north-western part of the research area, far away from the South Shetland Islands.

Go to article

Authors and Affiliations

Marek K. Zdanowski
Download PDF Download RIS Download Bibtex

Abstract

Water samples were collected at 12 oceanographic stations from six standard depths ranging from 0 to 100 and 150 m. The number of bacteria and concentration of organic components were expressed in adequate units per 1 litre of sea water and in the form of the integrated values for the whole water column under I m2 of sea of organic components were expressed in adequate units per 1 litre of sea water and in the form of the integrated values for the whole water column under 1 m2 of sea surface. Total numbers of bacteria (TC) ranged from 0.16 to 7.31 x 107/1 and 1.74 — 5.67 x 10, 2/m2 saprophytic bacteria (CFU) 0.10 — 46.85 x 103/1 and 0.62 — 27.7x 108/m2. contents of particulate organic carbon (РОС) 0.02 — 0.25 mg/1 and 3.5 — 20.0 g/m2 dissolved organic carbon (DOC) 0.07 — 3.02 mg/1 and 53.5 — 207.9 g/m2, dissolved free amino acids (DFAA) 0 — 1.8965 μmol/1 and 2.7 -151.5 mmol/m2, dissolved combined amino acids (DCAA) 0 2.9366 μmо1/1 and 16.5— 163.5 mmol/m2, particulate combined amino acids (PCAA) 0 — 3.0215 μmо1/1 and 3.7 — 249.0 mmol/m2. Total numbers of bacteria and РОС, DOC and DCAA concentrations, widely differentiated in the investigated area, were on the average much lower than the values obtaine in previous years. The saprophytic bacteria content and DFAA and PCAA concentrations were at a similar level to that in the past years. Higher TC and CFU values were observed in the areas with high concentrations of phytoioplankton to the NW of Anvers I. and around Clarence I.

Go to article

Authors and Affiliations

Marek K. Zdanowski
Download PDF Download RIS Download Bibtex

Abstract

Total count (TC) of bacteria in drifting annual pack-ice in austral spring fluctuated between 2.8-106 and 2,09-109 dm3. TC of bacteria was lowest in the upper layer of a large pack-ice fragment, emersed above water surface and almost completely free of diatoms; it was comparable to TC of bacteria in surrounding sea water, which was very low at this time (1,92- 106 — 5.8-106 dm -3). TC of bacteria increased in the deeper layers of pack-ice, attaining a maximum in the middle layer characterized by a high count of diatoms. TC of bacteria was highest in small pack-ice pieces 10—20 kg in being and densely overgrown with diatoms. Bacterial population in pack-ice was dominated by rods (62%), and it contained filamentous bacteria (2.4%) and prosthecate forms (4,8%), rarely present in deep sea. Mean volume of bacterial cell (0,206/μm3) was small, only slightly exceeding that of cells of free-living bacteria in sea water in summer.

Go to article

Authors and Affiliations

Marek K. Zdanowski

This page uses 'cookies'. Learn more