Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 15
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Conventionally, Porcine sapelovirus (PSV) has been considered to comprise a single geno- type, PSV-1; however, a potentially novel member of PSV was recently discovered. In the present study, we propose a genotype definition of PSV based on phylogenetic and genetic analyses of the polyprotein, P1, and VP1 genes of available PSV sequences. Two genotypes, with pro- posed names PSV-1 and PSV-2, were identified. Moreover, the cut-off values (number of diffe- rences per site between amino acid sequences) for the definition of genotypes were established to be 0.1115 (polyprotein), 0.176 (P1), and 0.272 (VP1). The findings of this study are expected to enrich knowledge of PSV classification.
Go to article

Authors and Affiliations

T. Yang
1
Y. Lu
1
L. Zhang
1

  1. College of Life Sciences and Resource Environment, Yichun University, Yichun, Jiangxi 336000, China
Download PDF Download RIS Download Bibtex

Abstract

In order to predict the distribution of shrinkage porosity in steel ingot efficiently and accurately, a criterion R√L and a method to obtain its

threshold value were proposed. The criterion R√L was derived based on the solidification characteristics of steel ingot and pressure

gradient in the mushy zone, in which the physical properties, the thermal parameters, the structure of the mushy zone and the secondary

dendrite arm spacing were all taken into consideration. The threshold value of the criterion R√L was obtained with combination of

numerical simulation of ingot solidification and total solidification shrinkage rate. Prediction of the shrinkage porosity in a 5.5 ton ingot of

2Cr13 steel with criterion R√L>0.21 m・℃1/2・s

-3/2 agreed well with the results of experimental sectioning. Based on this criterion,

optimization of the ingot was carried out by decreasing the height-to-diameter ratio and increasing the taper, which successfully eliminated

the centreline porosity and further proved the applicability of this criterion.

Go to article

Authors and Affiliations

C. Zhang
L. Zhang
Y. Bao
M. Wang
Download PDF Download RIS Download Bibtex

Abstract

Function of duck (Anas platyrhynchos) major histocompatibility complex class I (Anpl-MHC I) molecules in binding peptides is through the peptide binding groove (PBG), which is thought to be influenced by the high polymorphism of α1 and α2 domains. However, little is known about the polymorphism of Anpl-MHC I peptide binding domain (PBD), especially in the domestic duck. Here, we analyzed the polymorphism of forty-eight Anpl-MHC I α1 and α2 domains from domestic duck breeds previously reported. All sequences were analyzed through multiple sequence alignment and a phylogenetic tree was constructed. The coefficient of variance of the peptide binding domains (PBDs) from WS, CV, JD, and SX duck breeds was estimated based on the Wu-Kabat variability index, followed by the location of the highly variable sites (HVSs) on reported crystal structure models. Analysis of α1 and α2 domains showed common features of classical MHC class I and high polymorphism, especially in α1 domain. The constructed phylogenetic tree showed that PBDs of domestic ducks did not segregate based on breeds and had a close phylogenetic relationship, even with wild ducks. In each breed, HVSs were mostly located in the PBG, suggesting that they might determine peptide-binding characteristics and subsequently influence peptide presentation and recognition. The combined results of sequence data and crystal structure provide novel valuable insights into the polymorphism and diversity of Anpl-MHC I PBDs that will facilitate further studies on disease resistance differences between duck breeds and the development of cytotoxic T-lymphocyte (CTL) epitope vaccines suited for preventing diseases in domestic ducks.

Go to article

Authors and Affiliations

S. Yu
J. Wu
J. Bai
Y. Ding
W. Qiu
L. Zhang
Download PDF Download RIS Download Bibtex

Abstract

Culture gas atmosphere is one of the most important factors affecting embryo development in vitro. The main objective of this study was to compare the effects of CO concentration on the subsequent pre-implantation developmental capacity of pig embryos in vitro, including embryos obtained via parthenogenesis, in vitro fertilization (IVF), and intracytoplasmic sperm injection (ICSI). Pig embryos were developed in four different CO2 concentrations in air: 3%, 5%, 10%, or 15%. The cleavage rate of pig parthenogenetic, IVF, or ICSI embryos developed in CO2 concen- trations under 5% was the highest. There were no significant differences in the oocyte cleavage rate in ICSI embryos in CO2 concentrations under 3% and 5% (p>0.05). However, as CO2 levels increased (up to 15%) the blastocyst output on day 7, from parthenogenetic, IVF, and ICSI em- bryos, decreased to 0%. These findings demonstrate that CO2 positively affects the developmen- tal capacity of pig embryos. However, high or low CO2 levels do not significantly improve the developmental capacity of pig embryos. The best results were obtained for all of the pig embryos at a 5% CO2 concentration.

Go to article

Authors and Affiliations

L. Zhang
Z. Lin
Y. Bi
X. Zheng
H. Xiao
Z. Hua
Download PDF Download RIS Download Bibtex

Abstract

The effect of Ageratina adenophora on pathological characteristics of the liver and lungs as well as serum biochemical parameters in horses were investigated. Ten horses without ingestion history of Ageratina adenophora were classified into the control group, and 10 poisoned but survived horses with 3 months ingestion history were set as the case group. Results showed that serum AST, ALT, ALP, magnesium and phosphorus were elevated significantly, while creatinine was decreased remarkably. Hematoxylin and eosin staining of liver tissues showed diffuse swelling or destruction of hepatocytes, narrowing or atrophy of the hepatic sinusoids, and little lymphocytic infiltration; lung tissues presented destroyed alveoli and inflammatory cell infiltration.
Go to article

Bibliography


Feldman AT, Wolfe D (2014) Tissue processing and hematoxylin and eosin staining. Methods Mol Biol 1180: 31-43.

Jie F, Hu YC, Chen WH, Weng JH, Hu LW, Zhen S, He YJ, Quan M, Wang Y, Ren ZH (2018) Dosage-dependent effects of Eupatorium adenophorum on Saanen goat blood levels and the histopathology of several organs. Pratacul Sci 2: 11.

O’Sullivan BM (1979) Crofton weed (Eupatorium adenophorum) toxicity in horses. Aust Vet J 55: 19-21.

O’Sullivan BM (1985) Investigations into Crofton weed (Eupatorium adenophorum) toxicity in horses. Aust Vet J 62: 30-32.

Pessoa CR, Pessoa AF, Maia LA, Medeiros RM, Colegate SM, Barros SS, Soares MP, Borges AS, Riet-Correa F (2013) Pulmonary and hepatic lesions caused by the dehydropyrrolizidine alkaloid-producing plants Crotalaria juncea and Crotalaria retusa in donkeys. Toxicon 71: 113-120.

Rhiouani H, El-Hilaly J, Israili ZH, Lyoussi B (2008) Acute and sub-chronic toxicity of an aqueous extract of the leaves of Herniaria glabra in rodents. J Ethnopharmacol 118: 378-386.

Sun W, Zeng C, Yue D, Liu S, Ren Z, Zuo Z, Deng J, Peng G, Hu Y (2019) Ageratina adenophora causes spleen toxicity by inducing oxida-tive stress and pyroptosis in mice. R Soc Open Sci 6: 190127.
Go to article

Authors and Affiliations

X.L. Gu
1
F.Y. Dai
1
X. Xiao
1
G.Z. Li
2
L.M. Zhang
1
W.J. Qu
1

  1. College of Veterinary Medicine, Yunnan Agricultural University, Jin Hei Road No.65, Panlong District, 650051, Kunming, P.R. China
  2. College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
Download PDF Download RIS Download Bibtex

Abstract

Goose astrovirus (GoAstV) is a novel avastrovirus that typically causes gosling gout and results in 2 to 20% mortality. GoAstV capsid protein is the sole structural protein, which is responsible for viral attachment, assembly, maturation as well as eliciting host antibodies. However, the epitopes within capsid protein have not been well studied. In this study, a monoclonal antibody, named 1D7, was generated against GoAstV capsid protein by hybridoma technology. Western blot results showed that this MAb could react with recombinant capsid protein expressed in E. coli. Also, it recognized the precursor of capsid protein, VP90 and VP70, in GoAstV-infected cells. Besides, excellent specificity of MAb 1D7 was further demonstrated in indirect immunofluorescence assay and immunohistochemical analysis. Epitope mapping results revealed that MAb 1D7 recognized the epitope 33QKVY 36 within Cap protein. Sequence alignment indicated that 33QKVY 36 is a conserved epitope among the isolates of goose astrovirus type 2 (GoAstV-2), suggesting the potential for its use in GoAstV-2 specific diagnostic assay. These findings may provide some insight into a function of the GoAstV capsid protein and further contribute to the development of diagnostic methods for GoAstV infection.
Go to article

Authors and Affiliations

G. Dai
1 2 3
X. Huang
1 3
Q. Liu
1 3
Y. Li
1 3
L. Zhang
1 3
K. Han
1 3
J. Yang
1 3
Y. Liu
1 3
F. Xue
2
D. Zhao
1 2 4 3

  1. Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing City, Jiangsu Province, 210014, PR China
  2. College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Tongwei Road, Nanjing City, Jiangsu Province 210095, PR China
  3. Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing City, Jiangsu Province, 210014, PR China
  4. Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, Jiangsu Province, 212013, PR China
Download PDF Download RIS Download Bibtex

Abstract

Feeder cells can promote cell proliferation and help overcome the developmental arrest of early embryos by producing growth factors. The objective of this study was to evaluate the effects of feeder cells on the development of all single porcine parthenogenetic embryos in vitro. Firstly, we showed that the cleavage and blastocyst formation rate of all single procine parthenogenetic embryos co-cultured with feeder cells increased in contrast to those cultured without feeder cells (p<0.05). However, no statistically significant differences were observed between the blastocyst formation rate in the embryos co-cultured with 3 different kinds feeder cells namely oviduct epithelial feeder cells, granulose feeder cells and porcine fetal fibroblast feeder cells (p>0.05). Secondly, highly significant differences were observed between the cleavage and blastocyst formation rate (p<0.05) when the embryos were co-cultured with oviduct epithelial feeder cells in different volume drops ranging from 3 to 20 μL and the cleavage rate were the highest when cultured in 5 μL drops. Thirdly, the tempospacial pattern of the development of single embryos co-cultured with oviduct epithelial feeder cells was consistent with that of traditional multi-embryo culture, indicating that the co-culturing does not affect the developmental competence of the porcine parthenogenetic embryos. Finally, highly significant differences were observed between the cleavage and blastocyst formation rate with and without zona pellucida in vitro (p<0.05). In this study, a new adaption of in vitro co-culture of single porcine parthenogenetic embryos using feeder cells has been successfully established and this will facilitate further investigations to discover the mechanistic mode of developmental arrest of porcine embryos.

Go to article

Authors and Affiliations

L. Zhang
Z. Lin
Z. Hua
X. Zheng
H. Xiao
W. Hua
H. Ren
Z. Zhu
A. Molenaar
Y. Bi
Download PDF Download RIS Download Bibtex

Abstract

Classical swine fever (CSF) and porcine reproductive and respiratory syndrome (PRRS) are responsible for major economic losses and represent a threat to the swine industry worldwide. Routine surveillance serology for CSF and PRRS viruses is critical to maintaining the health status of sow farms in Hunan Province, which is one of the top pig production provinces in China. The aim of our study was to investigate the serological statistics of CSF virus (CSFV) and PRRS virus (PRRSV) in Hunan Province. The cohort serum samples were collected from vaccinated and unvaccinated pigs. Our findings showed that the average rates of CSFV and PRRSV antibody seropositivity were 82.2% (95% CI: 80.1-84.3) and 84.8% (95% CI: 82.5-87.1), respectively, in the immunized group and that these rates were higher than those in the unvaccinated group (58.6% for CSFV and 47.8% for PRRSV). Additionally, the level of CSFV antibody in piglet serum declined gradually with age, whereas PRRSV-specific antibody level increased initially (1 to 2 weeks old) and then declined with age (2 to 4 weeks old). In summary, we investigated the difference in CSFV/PRRSV antibody levels among piglets at various weeks old (1 to 4 weeks) to further establish the duration of maternal immunity in piglets. In addition, routine monitoring of CSFV/PRRSV antibodies in immunized pigs was carried out to evaluate the efficacy of vaccination.
Go to article

Bibliography


Brown VR, Bevins SN (2018) A Review of Classical Swine Fever Virus and Routes of Introduction into the United States and the Potential for Virus Establishment. Front Vet Sci 5: 31.
Chae C (2021) Commercial PRRS Modified-Live Virus Vaccines. Vaccines (Basel) 9: 185.
Deka D, Barman NN, Deka N, Batth BK, Singh G, Singh S, Agrawal RK, Mukhopadhyay CS, Ramneek (2021) Sero-epidemiology of por-cine parvovirus, circovirus, and classical swine fever virus infections in India. Trop Anim Health Prod 53: 180.
Farsang A, Lévai R, Barna T, Fábián K, Blome S, Belák K, Bálint Á, Koenen F, Kulcsár G (2017) Pre-registration efficacy study of a novel marker vaccine against classical swine fever on maternally derived antibody positive (MDA+) target animals. Biologicals 45: 85-92.
Gao JC, Xiong JY, Ye C, Chang XB, Guo JC, Jiang CG, Zhang GH, Tian ZJ, Cai XH, Tong GZ, An TQ (2017) Genotypic and geographical distribution of porcine reproductive and respiratory syndrome viruses in mainland China in 1996-2016. Vet Microbiol 208: 164-172.
Gong W, Li J, Wang Z, Sun J, Mi S, Lu Z, Cao J, Dou Z, Sun Y, Wang P, Yuan K, Zhang L, Zhou X, He S, Tu C (2019) Virulence evalua-tion of classical swine fever virus subgenotype 2.1 and 2.2 isolates circulating in China. Vet Microbiol 232: 114-120.
Goraya MU, Ziaghum F, Chen S, Raza A, Chen Y, Chi X (2018) Role of innate immunity in pathophysiology of classical swine fever virus infection. Microb Pathog 119: 248-254.
Guo Z, Chen XX, Li R, Qiao S, Zhang G (2018) The prevalent status and genetic diversity of porcine reproductive and respiratory syndrome virus in China: a molecular epidemiological perspective. Virol J 15: 2.
Han M, Yoo D (2014) Engineering the PRRS virus genome: updates and perspectives. Vet Microbiol 174: 279-295.
Luo Y, Li S, Sun Y, Qiu HJ (2014) Classical swine fever in China: a minireview. Vet Microbiol 172: 1-6.
Madapong A, Saeng-Chuto K, Chaikhumwang P, Tantituvanont A, Saardrak K, Pedrazuela Sanz R, Miranda Alvarez J, Nilubol D (2020) Immune response and protective efficacy of intramuscular and intradermal vaccination with porcine reproductive and respiratory syndrome vi-rus 1 (PRRSV-1) modified live vaccine against highly pathogenic PRRSV-2 (HP-PRRSV-2) challenge, either alone or in combination with of PRRSV-1. Vet Microbiol 244: 108655.
Montaner-Tarbes S, Del Portillo HA, Montoya M, Fraile L (2019) Key Gaps in the Knowledge of the Porcine Respiratory Reproductive Syndrome Virus (PRRSV). Front Vet Sci 6: 38.
Stoian AM, Rowland RR (2019) Challenges for Porcine Reproductive and Respiratory Syndrome (PRRS) Vaccine Design: Reviewing Virus Glycoprotein Interactions with CD163 and Targets of Virus Neutralization. Vet Sci 6: 9.
Suradhat S, Damrongwatanapokin S, Thanawongnuwech R (2007) Factors critical for successful vaccination against classical swine fever in endemic areas. Vet Microbiol 119: 1-9.
VanderWaal K, Deen J (2018) Global trends in infectious diseases of swine. Proc Natl Acad Sci USA 115: 11495-11500.
Yin B, Qi S, Sha W, Qin H, Liu L, Yun J, Zhu J, Li G, Sun D (2021) Molecular Characterization of the Nsp2 and ORF5 (ORF5a) Genes of PRRSV Strains in Nine Provinces of China During 2016-2018. Front Vet Sci 8: 605832.
Zhang H, Leng C, Tian Z, Liu C, Chen J, Bai Y, Li Z, Xiang L, Zhai H, Wang Q, Peng J, An T, Kan Y, Yao L, Yang X, Cai X, Tong G (2018) Complete genomic characteristics and pathogenic analysis of the newly emerged classical swine fever virus in China. BMC Vet Res 14: 204.
Zhou B (2019) Classical Swine Fever in China-An Update Minireview. Front Vet Sci 6: 187.
Zhou L, Ge X, Yang H (2021) Porcine Reproductive and Respiratory Syndrome Modified Live Virus Vaccine: A “Leaky” Vaccine with Debatable Efficacy and Safety. Vaccines (Basel) 9: 362.
Go to article

Authors and Affiliations

H. Yu
1
L. Zhang
1
Y. Cai
1
Z. Hao
2
Z. Luo
3
T. Peng
1
L. Liu
N. Wang
1
G. Wang
1
Z. Deng
1
Y. Zhan
1

  1. Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research Center of Reverse Vaccinology (RCRV), and Laboratory of Functional Proteomics (LFP), College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
  2. Yongzhou Animal Husbandry and Aquatic Affairs Center, Yongzhou, Hunan 425000, China
  3. Dingcheng Animal Husbandry and Aquatic Affairs Center, Changde, Hunan 415100, China

This page uses 'cookies'. Learn more