Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The investigation of Nida Valley water aimed to assess fluctuations in physicochemical properties. In this study, environmental monitoring method was utilized to evaluate the changes in physicochemical properties of water. Over a 24-month period, from June 2021 to May 2023, a total of 228 water samples were collected from 10 sampling sites, with a monthly sampling frequency. Statistical analyses were utilized including the Shapiro–Wilk test (α = 0.05), Kruskal–Wallis test and Wilcoxon (Mann–Whitney) rank sum test (α = 0.05), Pearson correlation analysis (α = 0.001) and principal component analysis (PCA). Statistical analyses revealed significant differences between months in GW samples for for temperature, dissolved oxygen, pH, total nitrogen, total phosphorus, chloride, manganese, and zinc in GW samples and for T and DO in SW samples. Pearson correlation coefficient analysis (α = 0.001) identified strong positive correlations within the SW dataset. Similarly, significant positive correlations were observed among the GW dataset. Noteworthy positive correlations were also detected between the GW and SW datasets. Principal component analysis (PCA) revealed a substantial dissimilarity between GW2 samples compared to others, characterized by elevated manganese, iron, and Sulfate content. Two distinct groups emerged: Group 1 included samples at GW1, GW2, GW3, GW5, and SW2, while Group 2 comprised all other samples. This study demonstrated the stability in the physicochemical properties of SW and underscore a discernible correlation between the hydrochemical compositions of both SW and GW in the riparian area. Outstanding characteristics in hydrochemical component of sample waters have been indicated.
Go to article

Bibliography

  1. APHA (1998). Standard methods for the examination of water and wastewater. 20th ed. Washington, DC. American Public Health Association. ISBN 0875532357 pp. 1325
  2. Ayers, R.S. & Westcot D.W. (1985). Water quality for agriculture. FAO Irrigation and Drainage Paper No. 29, Rome, Italy, pp: 8-96. ISBN 92-5-102263-1
  3. Bogdał, A., Kowalik, T., Ostrowski, K. & Skowron P. (2016). Seasonal variability of physicochemical parameters of water quality on length of Uszwica river, J. Ecol. Eng. 17(1), pp. 161–170. DOI:10.12911/22998993/61206
  4. Borden, R.C., Daniel, R.A., LeBrun, L.E. & Davis, C.W. (1997). Intrinsic biodegradation of MTBE and BTEX in a gasoline-contaminated aquifer, Water Resour. Res. 33, 1105–1115. DOI:10.1029/97W,R00014
  5. Borek, Ł. & Drymajło K. (2019). The role and importance of irrigation system for increasing the water resources: the case of the Nida River valley, ASP.FC. 18, 19–30. DOI:10.15576/ASP.FC/2019.18.3.19
  6. Cel, W., Kujawska, J. & Wasąg H. (2017). Impact of hydraulic fracturing on the quality of natural waters, J. Ecol. Eng. 18, pp. 63–68. DOI:10.12911/22998993/67852
  7. Chapman, D.V. (1996). Water Quality Assessments: A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring. 2nd Edn., Taylor and Francis, London, UK., pp: 626. ISBN-13: 9780419215905.
  8. Conant, B., Cherry, J.A. & Gillham, R.W. (2004). A PCE groundwater plume discharging to a river: influence of the streambed and near-river zone on contaminant distributions, Journal of Contaminant Hydrology 73, pp. 249–279. DOI:10.1016/j.jconhyd.2004.04.001
  9. Costello, M.J., McCarthy, T.K. &, O’Farrell M.M. (1984). The stoneflies (Plecoptera) of the Corrib catchment area, Ireland, Annls Limnol. 20, 25–34. DOI:10.1051/limn/1984014
  10. Demaku, S. & Bajraktari, N. (2019). Physicochemical Analysis of the Water Wells in the Area of Kosovo Energetic Corporation (Obiliq, Kosovo), J. Ecol. Eng. 20, pp. 155–160. DOI:10.12911/22998993/109874
  11. EPA (1983). Methods for chemical analysis of water and wastes. Washington, DC. United States Environmental Protection Agency pp. 491
  12. Harmancioglu, N.B., Ozkul, S.D. & Alpaslan, M.N. (1998). Water Quality Monitoring and Network Design. [In:] Harmancioglu, N.B., Singh, V.P., Alpaslan, M.N. (eds) Environmental Data Management, Water Science and Technology Library, vol 27. Springer, Dordrecht. DOI:10.1007/978-94-015-9056-3_4
  13. Khalil, B., Ouarda, T.B.M.J. & St-Hilaire, A. (2011). Estimation of water quality characteristics at ungauged sites using artificial neural networks and canonical correlation analysis, J. Hydrol., 405, pp. 277-287. DOI:10.1016/j.jhydrol.2011.05.024
  14. Kowalik, T., Bogdał, A., Borek, Ł. & Kogut, A. (2015). The effect of treated sewage outflow from a modernized sewage treatment plant on water quality of the Breń River, J. Ecol. Eng. 16, pp. 96–102. DOI:10.12911/22998993/59355
  15. Łajczak, A. (2004). Negative consequences of regulation of a meandering sandy river and proposals tending to diminish flood hazard. Case study of the Nida river, southern Poland. Proceedings of the Ninth International Symposium on River Sedimentation. Yichang, China. Beijing. IAHR p. 1773–1783
  16. Mirabbasi, R., Mazloumzadeh, S.M. & Rahnama, M.B. (2008). Evaluation of irrigation water quality using fuzzy logic, Res. J. Environ. Sci., 2, pp. 340-352. DOI:10.3923/rjes.2008.340.352
  17. Nowobilska-Luberda, A. (2018). Physicochemical and Bacteriological Status of Surface Waters and Groundwater in the Selected Catchment Area of the Dunajec River Basin, J. Ecol. Eng. 19, pp. 162–169. DOI:10.12911/22998993/86329
  18. Phan, C.N., Strużyński, A. & Kowalik, T. (2023). Monthly changes in physicochemical parameters of the groundwater in Nida valley, Poland (case study). Journal of water and Land development, 56 (I–III), pp, 220–234. DOI:10.24425/jwld.2023.143763
  19. Pitkin, S.E., Cherry, J.A., Ingleton, R.A. & Broholm M. (1999). Field Demonstrations Using the Waterloo Ground Water Profiler, Ground Water Monit. Remediat 19, pp. 122–131. DOI:10.1111/j.1745-6592.1999.tb00213.x
  20. Schuh, W.M., Klinkebiel, D.L., Gardner, J.C. & Meyer, R.F. (1997). Tracer and nitrate movement to groundwater in the northern great plains, J. Environ. Qual., 26, pp. 1335-1347. DOI:10.2134/jeq1997.00472425002600050020x
  21. Strużyński, A., Książek, L., Bartnik, W., Radecki-Pawlik, A., Plesiński, K., Florek, J., Wyrębek, M. & Strutyński M. (2015). Wetlands in River Valleys as an Effect of Fluvial Processes and Anthropopression, [in:] Ignar, S., Grygoruk, M. (Eds.), Wetlands and Water Framework Directive, GeoPlanet: Earth and Planetary Sciences, Springer International Publishing, Cham, pp. 69–90. DOI:10.1007/978-3-319-13764-3_5
  22. Valett, H.M., Fisher, S.G. & Stanley, E.H. (1990). Physical and Chemical Characteristics of the Hyporheic Zone of a Sonoran Desert Stream, Journal of the North American Benthological Society 9, pp. 201–215. DOI:10.2307/1467584
  23. Vrana, B., Allan, I.J., Greenwood, R., Mills, G.A., Dominiak, E., Svensson, K., Knutsson, J. & Morrison G. (2005). Passive sampling techniques for monitoring pollutants in water, TrAC Trends in Analytical Chemistry 24, pp. 845–868. DOI:10.1016/j.trac.2005.06.006
  24. WHO (2017). Guidelines for drinking-water quality [online]. 4th ed. World Health Organization ISBN 9789241548151 pp. 541. [Access 10.06.2022]. Available at: https://apublica.org/wp-content/uploads/2014/03/Guidelines-OMS-2011.pdf
  25. Wojak, S., Strużyński, A. & Wyrębek M. (2023). Analysis of changes in hydraulic parameters in a lowland river using numerical modeling, ASP.FC 22, pp. 3–17. DOI:10.15576/ASP.FC/2023.22.1.3
  26. Żelazo, J. (1993). The recent views on the small lowland river training. [In:] Nature and environment conservation in the lowland river valleys in Poland. Ed. L. Tomiałojć. Kraków. IOP PAN p. 145–154 (in Polish)
Go to article

Authors and Affiliations

Cong Ngoc Phan
1 2
ORCID: ORCID
Andrzej Strużyński
1
ORCID: ORCID
Tomasz Kowalik
1
ORCID: ORCID

  1. Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Krakow, Poland
  2. Institute of Chemistry, Biology and Environment, Vinh University, Vietnam

This page uses 'cookies'. Learn more