Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Fractography of stress corrosion cracking (SCC) of 20% cold worked Type 304 H stainless steel containing δ-ferrite was studied using a compact tension (CT) specimen in oxidizing primary water with a scanning electron microscope (SEM) and electron back scattered diffraction (EBSD). The stress corrosion crack propagated mostly in transgranular stress corrosion cracking (TGSCC) mode and sometimes in intergranular stress corrosion cracking (IGSCC) mode. TGSCC paths were along the {111} plane with both high resolved shear stress and high resolved tensile stress. IGSCC preferentially propagated along the grain boundary perpendicular to the loading axis. The findings in this work suggest that TGSCC proceeds through formation of a weakening zone at the head of the crack tip by interaction of slip and corrosion and then cracking of the weakened zone by tensile stress.
Go to article

Authors and Affiliations

Hong-Pyo Kim
1
ORCID: ORCID
Jong-Yeon Lee
1
ORCID: ORCID
Sung-Hwan Cho
1
ORCID: ORCID
Min-Jae Choi
1
ORCID: ORCID
Sung-Woo Kim
1
ORCID: ORCID
Hyung-Ha Jin
1
ORCID: ORCID
Dong-Jin Kim
1
ORCID: ORCID
Seoung-Sik Hwang
1
ORCID: ORCID
Yun-Soo Lim
1
ORCID: ORCID

  1. Korea Atomic Energy Rese arch Institute , Materials Safety Research Division, 989-111 Daedeok-daero, Yuseong-gu, Daejeon, 305-353, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

In this study, cobalt oxide (Co3O4) powder was prepared by simple precipitation and heat-treatment process of cobalt sulfate that is recovered from waste lithium-ion batteries (LIBs), and the effect of heat-treatment on surface properties of as-synthesized Co(OH)2 powder was systematically investigated. With different heat-treatment conditions, a phase of Co(OH)2 is transformed into CoOOH and Co3O4. The result showed that the porous and large BET surface area (ca. 116 m2/g) of Co3O4 powder was prepared at 200°C for 12 h. In addition, the lithium electroactivity of Co3O4 powder was investigated. When evaluated as an anode material for LIB, it exhibited good electrochemical performance with a specific capacity of about 500 mAh g–1 at a current density of C/5 after 50 cycles, which indicates better than those of commercial graphite anode material.
Go to article

Authors and Affiliations

Hyun-Woo Shim
1
ORCID: ORCID
Byoungyong Im
2 3
ORCID: ORCID
Soyeong Joo
2
ORCID: ORCID
Dae-Guen Kim
ORCID: ORCID

  1. Resources Utilization Research Division, Korea Institute of Geoscience & Mineral Resources (KIGAM)
  2. Materials Science and Chemical Engineering Center, Institute for Advanced Engineering (IAE ), 51 Goan Rd., Baegam-myeon, Yongin-si, Gyeonggi 17180, Yongin, Republic of Korea
  3. Sejong University, Depart ment of Nanotechnology and Advanced Materials Engineering, Seoul, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

Increasing the operating temperature and pressure of an automotive engine and reducing its weight can improve fuel efficiency and lower carbon dioxide emissions. These can be achieved by changing the engine piston material from conventional aluminum alloy to high-strength heat- resistant steel. American Iron and Steel Institute 4140 modified steels (AISI 4140 Mod.s), which have improved strength, oxidation resistance, and wear resistance at high temperature were developed by adjusting the AISI 4140 alloy compositions and optimizing the heat treatment process for automotive engine applications. In this study, the effects of modifying alloy compositions on the microstructure, mechanical properties (both at room and high temperatures), and oxidation of AISI 4140 Mod.s were investigated. Effective grain refinement occurred due to the influence of high-temperature stable carbide forming elements such as Mo, and V. The bainite structure changed to martensite structure under the influence Cr and Ni. As the Cr and W contents increased, the oxidation resistance was improved, and the oxide layer thickness decreased after 10 hours exposure at 500°C. The AISI 4140 Mod. exhibited a 35% improvement in room temperature strength, 70% improvement in high-temperature strength, and 40% improvement in high-temperature oxidation resistance compared to conventional AISI 4140.
Go to article

Authors and Affiliations

Hyo-Seong Kim
1 2 3
ORCID: ORCID
Moonseok Kang
1
ORCID: ORCID
Minha Park
1
ORCID: ORCID
Byung Jun Kim
1
ORCID: ORCID
Byoungkoo Kim
1
ORCID: ORCID
Yong-Sik Ahn
2
ORCID: ORCID

  1. Korea Institute of Industrial Technology, 46938, Busan, Republic of Korea
  2. Pukyong National University, Department of Materials Science and Engineering, 48547, Busan, Republic of Korea
  3. HD Korea Shipbuilding & Offshore Engineering, 44032, Ulsan, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

This study investigated the improvement in the electrical conductivity and mechanical properties obtained by adjusting the amount of the Sr addition to the Al-Zn-Mg-Mn alloy. The addition of Sr formed an intermetallic compounds, and the volume fraction of the intermetallic compounds increased with increasing Sr content. As the amount of Sr added increased from 0 to 1.0 wt%, the electrical conductivity of the extruded alloy decreased to 48.9, 45.2 and 42.5% IACS. As the addition amount of Sr increased, the average grain size of the rolled alloy decreased to 55.5, 53.1 and 42.3 μm. And, the ultimate tensile strength increased to 195, 212 and 216 MPa.
Go to article

Authors and Affiliations

Hyo-Sang Yoo
1 2
ORCID: ORCID
Yong-Ho Kim
1
ORCID: ORCID
Byoung-Kwon Lee
1
ORCID: ORCID
Eun-Chan Ko
1
ORCID: ORCID
Sang-Chan Lee
2
ORCID: ORCID
Seong-Hee Lee
2
ORCID: ORCID
Hyeon-Taek Son
1
ORCID: ORCID

  1. Korea Institute of Industrial Technology, Automotive Materials & Components R&D Group, 1110-9 Oryong-dong, Buk-gu, Gwangju 61012, Republic of Korea
  2. Mokpo National University, Jeollanamdo, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

To investigate the solid state weldability on SUS316L alloy, this work was carried out. Friction welding as a solid state welding was introduced and conducted at a rotation speed of 2,000 rpm and a friction pressure of 25 MPa on tube typed specimens. After this work, the grain boundary characteristic distributions such a grain size, shape and misorientation angle of the welds were clarified by electron backscattering diffraction method. The application of friction welding on SUS316L resulted in a significant refinement of the grain size in the weld zone (6.03 μm) compared to that of the base material (57.55 μm). Despite the grain refinement, the mechanical properties of the welds indicate relatively low or similar to the base material. These mechanical properties are due to dislocation density in the initial material and grain refinement in the welds.
Go to article

Authors and Affiliations

Youngkyu Kim
1
ORCID: ORCID
Kukhyun Song
1
ORCID: ORCID

  1. S-WELDS Inc., 27, Eonjang 1-gil, Samcheok-si, Gangwon-do 25913, Republic of Korea

This page uses 'cookies'. Learn more