Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

PIC microcontroller has a vital role in various types of controllers and nowadays the presence of PIC microcontroller is unavoidable in most control applications. This paper describes the enhancement of soft starting of induction motors using PIC microcontroller. Soft starting is required for the induction motors with reduced applied voltages so that the peak starting current is reduced and the startup of the motor is smooth with controlled torque and reduced mechanical vibrations, reduced starting current with correspondingly reduced bus voltage drops. While many of the available schemes of soft starting offer better results in view of smooth starting process, the proposed methodology offers soft starting as well as it cares about the source current quality. In contrast to the conventional multistep starting scheme, in this work a continuously controlled starting scheme is proposed. The three phase AC voltage controller topology is used as the core controller. In each of the half cycles, instead of a single conduction period with a single delay angle, the proposed AC voltage controller is switched symmetrically in each half cycle with multiple pulses in each quarter cycle. Symmetrically placed fixed numbers of switching pulses are used. The paper also describes the various time ratio controls namely the phase angle controller, the extinction angle controller and the symmetrical angle controller. The design aspects of the proposed soft starting scheme and the validation of the proposed system in the MATLAB SIMULINK environment are presented in this paper.
Go to article

Bibliography

  1.  I. Boldea, “Electric generators and motors: An overview”, in CES Trans. Electr. Mach. Syst. 1(1), 3‒14 (2017), doi: 10.23919/ TEMS.2017.7911104.
  2.  A.H. VanderMeulen, T.J. Natali, T.J. Dionise, G. Paradiso, and K. Ameele, “Exploring New and Conventional Starting Methods of Large Medium-Voltage Induction Motors on Limited kVA Sources”, IEEE Trans. Ind. Appl. 55, 4474‒4482 (2019).
  3.  R.F. McElveen and M.K. Toney, “Starting high-inertia loads”, IEEE Trans. Ind. Appl., 37, 137–144 (2001).
  4.  S.A. Hamed and B.J. Chalmers, “Analysis of variable-voltage thyristor controlled induction motors”, IEE Proc. 137, 184‒192 (1990).
  5.  O. Oputa, P.I. Obi, and I.K. Onwuka, “Induction motor starting analysis and start aided device comparison using ETAP”, Eur. J. Eng. Technol. Res. 2, 1‒7 (2017).
  6.  E.C. Carmo, V.F. Mendes, M.F. Santos, and L.A. Silva, “Starting large induction motors alternatives for emergency generation system”, 2018 Simposio Brasileiro de Sistemas Eletricos (SBSE), Niteroi, 2018, pp. 1‒6, doi: 10.1109/SBSE.2018.8395772.
  7.  A. Gastli and M.M. Ahmed, “ANN-based soft starting of Voltage-controlled-fed IM drive system”, IEEE Trans. Energy Convers. 20, 497‒503(2005).
  8.  H. Wadke, P. Gurav, S. Ghaytadak, and A. Singh, “Power Factor Improvement for Induction Motor by Using Capacitor Bank”, Int. J. Res. Eng. Sci. Manag. 1(1), 77‒79 (2018).
  9.  M. Hyla, “Start-up of large-power synchronous motor with the 6 kV voltage source inverter and microprocessor-controlled unit for excitation supply”, J. Electr. Eng. 69(1), 156‒162 (2018), doi: 10.2478/jee-2018-0019.
  10.  V. Volkov and A. A. Kolesnikov, “Energy-saving speed control of frequency-controlled induction motors on starting and decelerating”, Russ. Electr. Eng. 84(1), 237‒243(2013).
  11.  N. Balamurugan and S. Selvaperumal, “Assessment of Anti-windup PI controlled induction motor drive using V/F method”, Int J Adv. Eng. Tech. 7(1), 964‒968 (2018).
  12.  G.G. Richards and M.A. Laughton, “Limiting induction motor transient shaft torques following source discontinuities”, IEEE Trans. Energy Convers. 13(1), 250‒256 (1998).
  13.  G. Zenginobuz, I. Çadirci, M. Ermis, and C. Barlak, “Soft starting of large induction motors at constant current with minimized starting torque pulsations”, IEEE Trans. Ind. Appl. 37(1), 137–144 (2001).
  14.  A.A. Shaltout, “Analysis of torsional torques in starting of large squirrel cage induction motor”, IEEE Trans. Energy Convers. 9(1), 135‒142 (1994).
  15.  S.A. Derazm and H.Z. Azazi, “Current limiting soft starter for three phase induction motor drive system using PWM AC chopper”, IET Power Electron. 10(1), 1298‒1306 (2017).
  16.  I. Cadirci, M. Ermis, E. Nalcacl, B. Ertan, and M. Rahman, “A solid state direct on line starter for medium voltage induction motors with minimized current and torque pulsations”, IEEE Trans. Energy Convers. 14(3), 402‒412 (1999).
  17.  E. Omorogiuwa and Ch. Ayor, “Energy Efficiency Optimization Of Three Phase Induction Motor Drives For Industrial Applications”, Int. J. Eng. Appl. Sci. 5(1), 42‒49 (2018).
  18.  J. Yuan, Ch. Wang, Y. Zhu, and B. Chen, “A novel soft start method of super large capacity high voltage motor”, CES Trans. Electr. Mach. Syst. 3(1), 302‒308 (2019).
  19.  G. Vivek, J. Biswas, M.D. Nair and M. Barai, “Simplified double switching SVPWM implementation for three-level VSI”, J. Eng. 2019(11), 8257‒8269 (2019),
  20.  J.-K. Seok and S. Kim, “Hexagon Voltage Manipulating Control (HVMC) for AC Motor Drives Operating at Voltage Limit”, IEEE Trans. Ind. Appl., 51, 3829‒3837 (2015).
  21.  T.P. Holopainen and A. Arkio, “Simple Electromagnetic motor model for torsional analysis of variable speed drives with an induction motor”, Tech. Mech. 37, 347‒357 (2017).
  22.  O.S. Ebrahim, M.A. Badr, A.S. Elgendy, and P.K. Jai, “ANN-Based Optimal Energy Control of Induction Motor Drive in Pumping Applications”, IEEE Trans. Energy Convers. 25, 652‒660 (2010).
  23.  B. Basak, “Transient Behaviour of Three Phase Induction Motor Under Supply Interruption of One Phase During Starting”, in National Power Systems Conference-IIT, Kharagpur, 2002, pp. 259‒262.
  24.  M. Muthuramalingam, G.G. Samuel, C. Christober Asir Rajan, “A novel intelligent controller for soft starting scheme in three phase induction motor”, J. Eng. Technol. Res. 8, 371‒377 (2017).
  25.  N. Balamurugan and S. Selvaperumal, “Intelligent controller for speed control of three phase induction motor using indirect vector control method in marine applications”, Indian J. Geo-Mar. Sci. 47(1), 1069‒1074 (2018).
  26.  P. Strankowski, J. Guzinski, M. Morawiec, A. Lewicki, and F. Wilczynski, “Sensorless five-phase induction motor drive with third harmonic injection and inverter output filter”, Bull. Pol. Acad. Sci. Tech. Sci. 68(3), 437‒445 (2020).
Go to article

Authors and Affiliations

S. Selvaperumal
1
ORCID: ORCID
N. Krishnamoorthy
2
G. Prabhakar
3
ORCID: ORCID

  1. Department of EEE, Syed Ammal Engineering College, Ramanathapuram, Tamilnadu, India
  2. SBM College of Engineering and Technology, Dindigul-624005, Tamilnadu, India
  3. Department of EEE, V.S.B. Engineering College, Karur, Tamilnadu, India
Download PDF Download RIS Download Bibtex

Abstract

The mechanical and tribological properties of the Al/CNT composites could be controlled and improved by the method of its fabrication process. This research article deals with the optimization of mechanical and tribological properties of Al/CNT composites, which are fabricated using the mechanical alloying process with the different weight percentage of multi-walled CNT reinforcement. The phase change and the presence of CNT are identified using the X-Ray Diffraction (XRD) analysis. The influence of mechanical alloying process and the multi-walled CNT reinforcement on the mechanical, and tribological behaviours of the Al/CNT composites are studied. The optimal mechanical alloying process parameters and the weight percentage of multi-walled CNT reinforcement for the Al/CNT composite are identified using the Response Surface Methodology (RSM), which exhibits the better hardness, compressive strength, wear rate and Coefficient of Friction (CoF). The Al/CNT composite with 1.1 wt.% of CNT has achieved the optimal responses at the milling speed 301 rpm and milling time 492 minutes with the ball to powder weight ratio 9.7:1, which is 98% equal to the experimental result. This research also reveals that the adhesive wear is the dominant wear mechanism for the Al/CNT composite against EN31 stainless steel but the optimal Al/CNT composite with 1.1 wt.% of multi-walled CNT has experienced a mild abrasive wear.
Go to article

Bibliography

  1. M.S. Prabhu, A.E. Perumal, S. Arulvel, and R.F. Issac, “Friction and wear measurements of friction stir processed aluminium alloy 6082/CaCO3 composite”, Measurement 142, 10–20 (2019).
  2. Martinez, I. Guillot, and D. Massinon, “New heat treatment to improve the mechanical properties of low copper aluminum primary foundry alloy”, Mater. Sci. Eng. A 755, 158–165 (2019).
  3. Afkham, R.A. Khosroshahi, S. Rahimpour, C. Aavani, Brabazon, and R.T. Mousavian, “Enhanced mechanical properties of in situ aluminium matrix composites reinforced by alumina nanoparticles”, Arch. Civ. Mech. Eng. 18(1), 215–226 (2018).
  4. Li, J. Zhou, Y. Sun, A. Feng, X. Meng, S. Huang, and Y. Sun, “Study on mechanical properties and microstructure of 2024T351 aluminum alloy treated by cryogenic laser peening”, Optics Laser Tech. 120, 105670 (2019).
  5. Baradeswaran, A. Elayaperumal, and R.F. Issac, “A statistical analysis of optimization of wear behaviour of Al-Al2O3 composites using Taguchi technique”, Procedia Eng. 64, 973–982 (2013).
  6. Sochacka, A. Miklaszewski, and M. Jurczyk, “Development of β-type Ti-x at.% Mo alloys by mechanical alloying and powder metallurgy: Phase evolution and mechanical properties (10 ≤ x ≤ 35)”, J. Alloy. Compd. 776, 370–378 (2019).
  7. Sankaranarayanan, A.N. Balaji, K. Velmanirajan, and K. Gangatharan, “Mechanical and wear behaviour of the Al-Mg-nano ZrC composite obtained by means of the powder metallurgy method”, Bull. Pol. Acad. Sci. Tech. Sci. 66(5), 729–735 (2018).
  8. Canakci, F. Erdemir, T. Varol, and A. Patir, “Determining the effect of process parameters on particle size in mechanical milling using the Taguchi method: measurement and analysis”, Measurement 46(9), 3532–3540 (2013).
  9. B.L. Tomiczek, A. Dobrzan´ski, and M. Macek, “Effect of milling time on microstructure and properties of AA6061/ MWCNTS composite powders”, Arch. Metal. Mater. 60, 1 (2015).
  10. J.B. Fogagnolo, F. Velasco, M.H. Robert, and J.M. Torralba, “Effect of mechanical alloying on the morphology, microstructure and properties of aluminium matrix composite powders”, Mater. Sci. Eng. A 342(1-2), 131–143 (2003).
  11. M.A. Awotunde, A.O. Adegbenjo, B.A. Obadele, M. Okoro, B.M. Shongwe, and P.A. Olubambi, “Influence of sintering methods on the mechanical properties of aluminium nanocomposites reinforced with carbonaceous compounds: A review”, J. Mater. Res. Tech. 8(2), 2432–2449 (2019).
  12. B.P. Kumar and A.K. Birru, “Microstructure and mechanical properties of aluminium metal matrix composites with addition of bamboo leaf ash by stir casting method”, Trans. Nonferrous Met. Soc. China 27(12), 2555–2572 (2017).
  13. Sikder, S. Sarkar, K.G. Biswas, S. Das, S. Basu, and P.K. Das, “Improved densification and mechanical properties of spark plasma sintered carbon nanotube reinforced alumina ceramics”, Mater. Chem. Phys. 170, 99–107 (2016).
  14. Ferreira, P. Egizabal, V. Popov, M.G. de Cortázar, Irazustabarrena, A.M. López-Sabirón, and G. Ferreira, “Lightweight automotive components based on nanodiamondreinforced aluminium alloy: A technical and environmental evaluation”, Diam. Relat. Mat. 92, 174–186 (2019).
  15. Manikandan, R. Sieh, A. Elayaperumal, H.R. Le, and S. Basu, “Micro/nanostructure and tribological characteristics of pressureless sintered carbon nanotubes reinforced aluminium matrix composites”, J. Nanomater. 2016, 9843019 (2016).
  16. Varo, and A. Canakci, “Effect of the CNT content on microstructure, physical and mechanical properties of Cu-based electrical contact materials produced by flake powder metallurgy”, Arab. J. Sci. Eng. 40(9), 2711–2720 (2015).
  17. N.A. Bunakov, D.V. Kozlov, V.N. Golovanov, E.S. Klimov, E.E. Grebchuk, M.S. Efimov, and B.B. Kostishko, “Fabrication of multi-walled carbon nanotubes–aluminum matrix composite by powder metallurgy technique”, Results Phys. 6, 231–232 (2016).
  18. V.A. Popov, E.V. Shelekhov, A.S. Prosviryakov, M.Y. Presniakov, B.R. Senatulin, A.D. Kotov, and I.I. Khodos, “Application of nanodiamonds for in situ synthesis of TiC reinforcing nanoparticles inside aluminium matrix during mechanical alloying”, Diam. Relat. Mat., 75, 6–11 (2017).
  19. Khajelakzay, and S.R. Bakhshi, “Optimization of spark plasma sintering parameters of Si3N4-SiC composite using response surface methodology (RSM)”, Ceram. Int., 43(9), 6815 (2017).
  20. K.K. Ekka, and S.R. Chauhan, “Dry sliding wear characteristics of SiC and Al2O3 nanoparticulate aluminium matrix composite using Taguchi technique”, Arab. J. Sci. Eng. 40(2), 571 (2015).
  21. Saravanan, A.E. Perumal, R.F. Issac, S.C. Vettivel, and A. Devaraju, “Optimization of wear parameters and their relative effects on TiN coated surface against Ti6Al4V alloy”, Mater. Des. 92, 23–35 (2016).
  22. M.M. Bastwros, A.M. Esawi, and A. Wifi, “Friction and wear behavior of Al–CNT composites”, Wear 307(1-2), 164–173 (2013).
  23. Abdullahi, M.A. Maleque, and U. Nirmal, “Wear mechanisms map of CNT-Al nano-composite”, Proc. Eng. 68, 736–742 (2013).
  24. A.M.K. Esawi, K. Morsi, A. Sayed, M. Taher, and S. Lanka, “Effect of carbon nanotube (CNT) content on the mechanical properties of CNT- reinforced aluminium composites”, Compos. Sci. Technol., 70(16), 2237–2241 (2010).
  25. F. Deng, D.Z. Wang, X.X. Zhang, and A.B. Li, “Processing and properties of carbon nanotubes reinforced aluminum composites”, Mater. Sci. Eng. A 444(1-2), 138 (2007).
  26. P.R. Soni, Mechanical alloying: fundamentals and applications, Cambridge Int. Science Publishing, 2000.
  27. Shi, Z. Ni, Y. Lu, L. Zhao, J. Zou, and Q. Guo, “Interfacial properties and their impact on the tensile behavior of nanolaminated single-walled carbon nanotube-aluminum composite”, Materialia 12, 100797 (2020).
  28. Nie, H. Wang, and J. He, “Evaluation of the effect of adding carbon nanotubes on the effective mechanical properties of ceramic particulate aluminum matrix composites”, Mech. Mater. 142, 103276 (2020).
  29. Z.Y. Liu, K. Zhao, B.L. Xiao, W.G. Wang, and Z.Y. Ma, “Fabrication of CNT/Al composites with low damage to CNTs by a novel solution- assisted wet mixing combined with powder metallurgy processing”, Mater. Des. 97, 424–430 (2016).
  30. Hu, F. Chen, J. Xu, Q. Nian, D. Lin, C. Chen, and M. Zhang, “3D printing graphene-aluminum nanocomposites”, J. Alloy. Compd. 746, 269–276 (2018).
  31. E.A. Belenkov, and F.K. Shabiev, “Scroll structure of carbon nanotubes obtained by the hydrothermal synthesis”, Lett. Mater. 5(4), 459–462 (2015).
  32. Baradeswaran, S.C. Vettivel, A.E. Perumal, N. Selvakumar, and R.F. Issac, “Experimental investigation on mechanical behaviour, modelling and optimization of wear parameters of B4C and graphite reinforced aluminium hybrid composites”, Mater. Des. 63, 620–632 (2014).
  33. Kim, K. Park, K. Kim, T. Miyazaki, S. Joo, S. Hong, and H. Kwon, “Carbon nanotubes-reinforced aluminum alloy functionally graded materials fabricated by powder extrusion process”, Mater. Sci. Eng. A 745, 379–389 (2019).
  34. C.R. Bradbury, J.K. Gomon, L. Kollo, H. Kwon, and M. Leparoux, “Hardness of multi wall carbon nanotubes reinforced aluminium matrix composites”, J. Alloy. Compd. 585, 362–367 (2014).
  35. Shi, L. Zhao, Z. Li, Z. Li, D.B. Xiong, Y. Su, and Q. Guo, “Strengthening and deformation mechanisms in nanolaminated single-walled carbon nanotube-aluminum composites”, Mater. Sci. Eng. A 764, 138273 (2019).
  36. H.J. Choi, S.M. Lee, and D. Bae, “Wear characteristic of aluminum-based composites containing multi-walled carbon nanotubes”, Wear 270(1- 2), 12–18 (2010).
  37. M.A. Xavior, H.P. Kumar, and K.A. Kumar, “Tribological studies on AA 2024–Graphene/CNT Nanocomposites processed through Powder Metallurgy”, Mater. Today Proc. 5(2), 6588– 6596 (2018).
  38. M.R. Akbarpour, S. Alipour, and M. Najafi, “Tribological characteristics of self-lubricating nanostructured aluminum reinforced with multi-wall CNTs processed by flake powder metallurgy and hot pressing method”, Diam. Relat. Mat., 90, 93–100 (2018).
  39. Q.M. Gong, Z. Li, Z. Zhang, B. Wu, X. Zhou, Q.Z. Huang, and J. Liang, “Tribological properties of carbon nanotubedoped carbon/carbon composites”, Tribol. Int. 39(9), 937–944 (2006).
  40. W.S. Im, Y.S. Cho, G.S. Choi, F.C. Yu, and D.J. Kim, “Stepped carbon nanotubes synthesized in anodic aluminum oxide templates”, Diam. Relat. Mat., 13(4-8), 1214–1217 (2004).
Go to article

Authors and Affiliations

P. Manikandan
1
A. Elayaperumal
1
R. Franklin Issac
1
ORCID: ORCID

  1. Department of Mechanical Engineering, College of Engineering Guindy, Anna University, Chennai – 600025, Tamil Nadu, India
Download PDF Download RIS Download Bibtex

Abstract

The paper presents issues associated with the impact of electromagnetic interference on track-side cabinets of a closed-circuit television system (CCTV) functioning in a railway transport environment. The measurements of an electromagnetic field emitted by a track-side CCTV cabinet were presented. Designs of this kind are operated in railway facilities; therefore, they should not disturb the functioning of other equipment, the rail traffic control systems, in particular (so-called inner compatibility). An analysis of the obtained results enabled developing a research model, and a further reliability and operational analysis, taking into account electromagnetic interference. This enabled determining a relationship allowing the determination of the probability of a track-side CCTV cabinet staying in a state of full ability. The presented discussions regarding a track-side CCTV cabinet, taking into account electromagnetic interference, allow for the numerical assessment of different types of solutions (technical and organizational), which can be implemented in order to mitigate the impact of electromagnetic interference on a system’s functioning.
Go to article

Bibliography

  1.  R. Gordon, Intelligent Freeway Transportation Systems: Functional Design, Springer Science+Business Media, 2009.
  2.  P. Łubkowski and D. Laskowski, “Selected Issues of Reliable Identification of Object in Transport Systems Using Video Monitoring Services”, in Communication in Computer and Information Science, vol. 471, pp. 59‒68, Springer, Berlin Heidelberg, 2015.
  3.  M. Siergiejczyk, A. Rosiński, and J. Paś, “Analysis of unintended electromagnetic fields generated by safety system control panels”, Diagnostyka 17(3), 35‒40 (2016).
  4.  M. Siergiejczyk, J. Paś, and A. Rosiński, “Train call recorder and electromagnetic interference”. Diagnostyka 16(1), 19‒22 (2015).
  5.  K. Sunitha and M. Joy Thomas, “Effect of Soil Conditions on the Electromagnetic Field From an Impulse Radiating Antenna and on the Induced Voltage in a Buried Cable”, IEEE Trans. Electromagn. Compat. 61(4), 990‒997 (2019), doi: 10.1109/TEMC.2018.2844205.
  6.  M. Kornaszewski, M. Chrzan, and Z. Olczykowski, “Implementation of New Solutions of Intelligent Transport Systems in Railway Transport in Poland”, in Communications in Computer and Information Science, pp. 282‒292, Springer, 2017.
  7.  J. Dyduch, J. Paś, and A. Rosiński, The basic of the exploitation of transport electronic systems, Publishing House of Radom University of Technology, Radom, 2011.
  8.  J. Paś, Operation of electronic transportation systems, Publishing House University of Technology and Humanities, Radom, 2015.
  9.  M. Chrzan, M. Kornaszewski, and T. Ciszewski, “Renovation of Marine Telematics Objects in the Process of Exploitation”, in Communications in Computer and Information Science, pp. 337‒351, Springer, 2018.
  10.  M. Siergiejczyk, J. Paś, and E. Dudek, “Reliability analysis of aerodrome’s electronic security systems taking into account electromagnetic interferences”, in Risk, Reliability and Safety: Innovating Theory and Practice: Proceedings of ESREL 2016, pp. 2285‒2292, eds. L. Walls, M. Revie, and T. Bedford, CRC Press/Balkema, 2017.
  11.  A. Rosiński, Modelling the maintenance process of transport telematics systems, Publishing House Warsaw University of Technology, Warsaw, 2015.
  12.  D. Romero-Faz and A. Camarero-Orive, “Risk assessment of critical infrastructures – New parameters for commercial ports”, Int. J. Crit. Infor. Prot. 18, 50‒57 (2017).
  13.  M. Jacyna, J. Żak, and P. Gołębiowski, “The EMITRANSYS model and the possibilities of its application for the analysis of the development of sustainable transport systems”, Combust. Eng. 179(4), 243‒248 (2019).
  14.  R. Billinton and R.N. Allan, Reliability evaluation of power systems, Plenum Press, New York, 1996.
  15.  R. Hari Kumar, N. Mayadevi, V.P. Mini, and S. Ushakumari, “Transforming distribution system into a sustainable isolated microgrid considering contingency”, Bull. Pol. Acad. Sci. Tech. Sci. 67(5), 871‒881 (2019).
  16.  R. Matyszkiel, R. Polak, P. Kaniewski, and D. Laskowski, “The results of transmission tests of polish broadband SDR radios”, in Communication and Information Technologies (KIT), pp. 1‒6, Slovakia, 2017.
  17.  A. Kierzkowski and T. Kisiel, “Simulation model of security control system functioning: A case study of the Wroclaw Airport terminal”, J. Air. Transp. Manag. 64(B), 173‒185 (2016).
  18.  D. Caban and T. Walkowiak, “Dependability analysis of hierarchically composed system-of-systems”, in Proceedings of the Thirteenth International Conference on Dependability and Complex Systems DepCoS-RELCOMEX, pp. 113‒120, eds. W. Zamojski, J. Mazurkiewicz, J. Sugier, T. Walkowiak, and J. Kacprzyk, Springer, 2019.
  19.  M. Borecki, M. Ciuba, Y. Kharchenko, and Y. Khanas, “Substation reliability evaluation in the context of the stability prediction of power grids”, Bull. Pol. Acad. Sci. Tech. Sci. 68(4), 769‒776 (2020).
  20.  M. Siergiejczyk, K. Krzykowska, and A. Rosiński, “Evaluation of the influence of atmospheric conditions on the quality of satellite signal”, in Marine Navigation, pp. 121‒128, ed. A. Weintrit, CRC Press/Balkema, London, 2017.
  21.  M. Stawowy and P. Dziula, “Comparison of uncertainty multilayer models of impact of teleinformation devices reliability on information quality”, in Proceedings of the European Safety and Reliability Conference ESREL 2015, pp. 2685‒2691, eds. L. Podofillini, B. Sudret, B. Stojadinovic, E. Zio, and W. Kröger, CRC, Press/Balkema, 2015.
  22.  M. Stawowy and Z. Kasprzyk, “Identifying and simulation of status of an ICT system using rough sets”, in Proceedings of the Tenth International Conference on Dependability and Complex Systems DepCoS-RELCOMEX, pp. 477‒484, eds. Z. Zamojski, J. Mazurkiewicz, J. Sugier, T. Walkowiak, and J. Kacprzyk, Springer, 2015.
  23.  T. Dabrowski, M. Bednarek, K. Fokow, and M. Wisnios, “The method of threshold-comparative diagnosing insensitive on disturbances of diagnostic signals”, Prz. Elektrotechniczny – Electrical Review 88(11A), 93‒97 (2012).
  24.  M. Łabowski and P. Kaniewski, “Motion Compensation for Unmanned Aerial Vehicle’s Synthetic Apperture Radar”, in Signal Processing Symposium SPSympo 2015, Debe, 2015, pp.184‒188.
  25.  P. Kaniewski, R. Gil, and S. Konatowski, “Estimation of UAV Position with Use of Smoothing Algorithms”, Metrol. Meas. Syst. 24(1), 127‒142 (2017).
  26.  K. Reddig, B. Dikunow, and K. Krzykowska, “Proposal of big data route selection methods for autonomous vehicles”, Internet Technol. Lett. 1(36), 1–6 (2018).
  27.  S. Duer, R. Duer, and S. Mazuru, “Determination of the expert knowledge base on the basis of a functional and diagnostic analysis of a technical object”, Romanian Association of Nonconventional Technologies XX(2), 23‒29 (2016).
  28.  S. Duer, K. Zajkowski, I. Płocha, and R. Duer, “Training of an artificial neural network in the diagnostic system of a technical object”, Neural Comput. Appl. 22(7), 1581‒1590 (2013).
  29.  F. Losurdo, I. Dileo, M. Siergiejczyk, K. Krzykowska, and M. Krzykowski, “Innovation in the ICT infrastructure as a key factor in enhancing road safety. A multi-sectoral approach”, in Proceedings 25th International Conference on Systems Engineering ICSEng 2017, pp. 157–162, eds. H. Selvaraj, G. Chmaj, and D. Zydek, 2017.
  30.  R. Burdzik, Ł. Konieczny, and T. Figlus, “Concept of on-board comfort vibration monitoring system for vehicles”, in Activities of Transport Telematics, pp. 418‒425, ed. J. Mikulski, Springer, Heidelberg, 2013.
  31.  M. Kostrzewski, “Analysis of selected acceleration signals measurements obtained during supervised service conditions – study of hitherto approach”, J. Vibroeng. 20(4), 1850‒1866 (2018).
  32.  M. Ali Niknejad, Electromagnetics for High-Speed Analog and Digital Communication Circuits, Cambridge University Press, 2007.
  33.  S. Piersanti, A. Orlandi, and F. de Paulis, “Electromagnetic Absorbing materials design by optimization using a machine learning approach”, IEEE Trans. Electromagn. Compat. 1‒8 (2018), doi: 10.1109/TEMC.2018.2871879.
  34.  J. Vašata and R. Doleček, “Electromagnetic compatibility and lightning current impacts in the railway equipment buildings”, in 26th Conference Radioelektronika 2016, Košice, Slovak Republic, 2016.
  35.  E. Lheurette, Metamaterials and Wave Control, ISTE and Wiley, 2013.
  36.  H. Urbancokova, J. Valouch, and M. Adamek, “Testing of an Intrusion and Hold-up Systems for Electromagnetic Susceptibility – EFT/B”, Int. J. Circuits Syst. Signal Process. 9, 40‒46 (2015).
  37.  J. Valouch, “Technical requirements for Electromagnetic Compatibility of Alarm Systems”, Int. J. Circuits Syst. Signal Process. 9, 186‒191 (2015).
  38.  S. Kovaf, J. Valouch, H. Urbančoková, and M. Adámek, “Electromagnetic interference of CCTV”, in International Conference on Information and Digital Technologies, Zilina, 2015, pp. 172‒177.
  39.  S. Kovář, J. Valouch, H. Urbančoková, and M. Adámek, “Impact of security cameras on electromagnetic environment in far and near- field”, in International Conference on Information and Digital Technologies (IDT) 2016, Rzeszow, 2016, pp. 156‒159.
  40.  H. Urbancokova and J. Valouch, “Monitoring of the tests EMS information technology equipment using the CCTV system”, Int. J. Circuits Syst. Signal Process. 9, 9‒15 (2015).
  41.  H. Urbancokova, S. Kovar, O. Halaska, and J. Valouch, “Immunity of electronic devices against radio-frequency electromagnetic fields”, in 21st International Conference on Circuits, Systems, Communications and Computers (CSCC 2017), MATEC Web of Conferences, vol. 125, 2017.
  42.  R.D. White, L.M. McCormack, and P.W. Hooper, “Electrical System Integration, Electromagnetic Compatibility (EMC) Interface Management of Railway Electrification Systems”. HKIE Trans. 13 (1), 55‒59 (2006).
  43.  Z. Wróbel, “The Electromagnetic Compatibility in Researches of Railway Traffic Control Devices”, in Analysis and Simulation of Electrical and Computer Systems, pp. 275‒287, eds. D. Mazur, M. Gołębiowski, and M. Korkosz, Springer, 2018.
  44.  M. Urbaniak, E. Kardas-Cinal, and M. Jacyna, “Optimization of energetic train cooperation”, Symmetry 11(1175), (2019).
  45.  E. Masson, M. Berbineau, Broadband Wireless Communications for Railway Applications, Studies in Systems, Decision and Control, Springer International Publishing, 2017.
  46.  PN-EN 55016-4-2:2011 + A1:2014. Specification for radio disturbance and immunity measuring apparatus and methods – Part 4‒2: Uncertainties, statistics and limit modelling – Measurement instrumentation uncertainty.
  47.  PN-EN 55016-2-3:2017. Specification for radio disturbance and immunity measuring apparatus and methods – Part 2‒3: Methods of measurement of disturbances and immunity – Radiated disturbance measurements.
  48.  PN-EN 50121-3-2:2017. Railway applications – Electromagnetic compatibility – Part 3‒2: Rolling stock – Apparatus.
  49.  PN-EN 61000-6-4:2008 + A1:2012. Electromagnetic compatibility (EMC) – Part 6‒4: Generic standards – Emission standard for industrial environments.
  50.  R. Smolenski, P. Lezynski, J. Bojarski, W. Drozdz, and L.C. Long, “Electromagnetic compatibility assessment in multiconverter power systems – Conducted interference issues”, Measurement 165, 1‒8 (2020).
  51.  V. Kuznetsov, B. Lyubarskyi, E. Kardas-Cinal, B. Yeritsyan, I. Riabov, and I. Rubanik, “Recommendations for the selection of parameters for shunting locomotives”, Arch. Transp. 56(4), 119–133 (2020).
  52.  C. Alcaraz and S. Zeadally, “Critical infrastructure protection: Requirements and challenges for the 21st century”, Int. J. Crit. Infrastruct. Prot. 8, 53‒66 (2015).
  53.  M. Stawowy and M. Siergiejczyk, “Application and simulations of uncertainty multilevel models to ensure the ITS services”, in Risk, Reliability and Safety: Innovating Theory and Practice: Proceedings of ESREL 2016, pp. 601‒605, eds. L. Walls, M. Revie, and T. Bedford, CRC Press/Balkema, 2017.
  54.  D. Szmel, W. Zabłocki, P. Ilczuk, and A. Kochan, “Selected issues of risk assessment in relation to railway signalling systems”, WUT J. Transp. Eng. 127, 81–91 (2019).
  55.  J. Paś and T. Klimczak, “Selected issues of the reliability and operational assessment of a fire alarm system”, Eksploatacja i Niezawodnosc– Maintenance and Reliability 21(4), 553‒561 (2019).
  56.  M. Siergiejczyk, A. Rosiński, P. Dziula, and K. Krzykowska, “Reliability-exploitation analysis of highway transport telematics systems”, KONBiN 1(33), 177–186 (2015).
  57.  J. Paś, A. Rosiński, M. Chrzan, and K. Białek, “Reliability-Operational Analysis of the LED Lighting Module Including Electromagnetic Interference”, IEEE Trans. Electromagn. Compat. 62(6), 2747‒2758 (2020).
Go to article

Authors and Affiliations

Jacek Paś
1
ORCID: ORCID
Adam Rosiński
2
ORCID: ORCID
Kamil Białek
3
ORCID: ORCID

  1. Military University of Technology, ul. gen. S. Kaliskiego 2, 00-908 Warsaw, Poland
  2. Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
  3. Railway Institute, ul. Chłopickiego 50, 04-275 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

This work evaluates the influence of gate drive circuitry to cascode GaN device’s switching waveforms. This is done by comparing three PCBs using three double-pulse-test (DPT) with different gate driving loop design. Among important parasitic elements, source-side inductance shows a significant impact to gate-source voltage waveform. A simulation model based on experimental measurement of the cascode GaNFET used in this work is modified by author. The simulation model is implemented in a synchronous buck converter topology and hereby to assess the impact of gate driving loop of cascode GaN device in both continuous conduction mode (CCM) and critical conduction mode (CRM). Apart from simulation, a synchronous buck converter prototype is presented for experimental evaluation, which shows a 99.15% efficiency at 5A under soft-switching operation (CRM) with a 59ns dead-time.
Go to article

Bibliography

  1.  Power Electronics UK and CSA CATAPULT, “Opportunities and Challenges of Wide Band Gap Power Devices”, pp. 1–8, 2020.
  2.  E.A. Jones, F.F. Wang, and D. Costinett, “Review of Commercial GaN Power Devices and GaN-Based Converter Design Challenges”, IEEE J. Emerg. Sel. Top. Power Electron. 4(3), 707–719 (2016).
  3.  H. Jain, S. Rajawat, and P. Agrawal, “Comparision of wide band gap semiconductors for power electronics applications”, 2008 Int. Conf. Recent Adv. Microw. Theory Appl. Microw, 2008, pp. 878–881.
  4.  S. Chowdhury, Z. Stum, Z. Da Li, K. Ueno, and T.P. Chow, “Comparison of 600 V Si, SiC and GaN power devices”, Mater. Sci. Forum 778–780, pp. 971–974 (2014).
  5.  A. Taube, M. Sochacki, J. Szmidt, E. Kamińska, and A. Piotrowska, “Modelling and Simulation of Normally-Off AlGaN/GaN MOS- HEMTs”, Int. J. Electron. Telecommun. 60(3), 253–258 (2014).
  6.  B.N. Pushpakaran, A.S. Subburaj, and S.B. Bayne, “Commercial GaN-Based Power Electronic Systems: A Review”, J. Electron. Mater. 49(11), 6247–6262 (2020).
  7.  C.T. Ma and Z.H. Gu, “Review of GaN HEMT applications in power converters over 500 W”, Electronics 8(12), 1401 (2019).
  8.  H. Jain, S. Rajawat, and P. Agrawal, Comparision of wide band gap semiconductors for power electronics applications, 2008.
  9.  H. Umeda et al., “High power 3-phase to 3-phase matrix converter using dual-gate GaN bidirectional switches”, 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, USA, 2018, pp. 894‒897, doi: 10.1109/APEC.2018.8341119.
  10.  K. Nowaszewski and A. Sikorski, “Predictive current control of three-phase matrix converter with GaN HEMT bidirectional switches”, Bull. Pol. Acad. Sci. Tech. Sci. 68(4), 1077–1085 (2020).
  11.  S.Y. Tang, “Study on characteristics of enhancement-mode gallium-nitride high-electron-mobility transistor for the design of gate drivers”, Electronics 9(10), 1573 (2020).
  12.  J. Rąbkowski, K. Król, M. Zdanowski, and M. Sochacki, “GaN-based soft-switched active power buffer operating at ZCS – problems of start-up and shut-down”, Bull. Pol. Acad. Sci. Tech. Sci. 68(4), 785–792 (2020).
  13.  S. Davis, “The Great Semi Debate: SiC or GaN?”, 2019. [Online]. Available: https://www.powerelectronics.com/technologies/power- management/article/21864289/the-great-semi-debate-sic-or-gan. [Accessed: 20-Nov-2020].
  14.  Transphorm Inc., “Cascode vs. e-mode” [Online]. Available: https://www.transphormusa.com/en/gan-revolution/#casecode-vs-e-mode.  
  15. Transphrom Inc., “Design Resources” [Online]. Available: https://www.transphormusa.com/en/design-resources/#evaluation-kits. [Accessed: 20-Nov-2020].
  16.  Z. Liu, “Characterization and Application of Wide-Band- Gap Devices for High Frequency Power Conversion”, Ph.D. Thesis, Virginia Tech, 2017.
  17.  F.C. Lee and R. Burgos, “Characterization and Failure Mode Analysis of Cascode GaN HEMT Characterization and Failure Mode Analysis of Cascode GaN HEMT”, Ms.C. Thesis, Virginia Tech, 2014.
  18.  Z. Liu, X. Huang, F.C. Lee, and Q. Li, “Package parasitic inductance extraction and simulation model development for the high-voltage cascode GaN HEMT”, IEEE Trans. Power Electron. 29(4), 1977–1985 (2014).
  19.  K. Umetani, K. Yagyu, and E. Hiraki, “A design guideline of parasitic inductance for preventing oscillatory false triggering of fast switching GaN-FET”, IEEJ Trans. Electr. Electron. Eng. 11(52), S84–S90 (2016).
  20.  T. Ibuchi and T. Funaki, “A study on parasitic inductance reduction design in GaN-based power converter for high-frequency switching operation”, 2017 International Symposium on Electromagnetic Compatibility – EMC EUROPE, Angers, 2017, pp. 1‒5, doi: 10.1109/ EMCEurope.2017.8094824.
  21.  B. Sun, Z. Zhang, and M.A.E. Andersen, “Research of low inductance loop design in GaN HEMT application”, IECON 2018 – 44th Annual Conference of the IEEE Industrial Electronics Society, Washington, USA, 2018, pp. 1466‒1470, doi: 10.1109/IECON.2018.8591732.
  22.  Transphorm Inc., “TPH3205WSB 650 V GaN FET in TO-247 (source tab)”, 2017, [Online]. Available: https://www.transphormchina. com/en/document/650v-cascode-gan-fet-tph3205w/
Go to article

Authors and Affiliations

Q.Y. Tan
1
E.M.S. Narayanan
1

  1. Department of Electronic and Electrical Engineering, The University of Sheffield, S1 3JD, UK
Download PDF Download RIS Download Bibtex

Abstract

Individual identification of similar communication emitters in the complex electromagnetic environment has great research value and significance in both military and civilian fields. In this paper, a feature extraction method called HVG-NTE is proposed based on the idea of system nonlinearity. The shape of the degree distribution, based on the extraction of HVG degree distribution, is quantified with NTE to improve the anti-noise performance. Then XGBoost is used to build a classifier for communication emitter identification. Our method achieves better recognition performance than the state-of-the-art technology of the transient signal data set of radio stations with the same plant, batch, and model, and is suitable for a small sample size.
Go to article

Bibliography

  1.  J. Dudczyk, “Radar emission sources identification based on hierarchical agglomerative clustering for large data sets”, J. Sens. 2016, 1879327 (2016).
  2.  G. Manish, G. Hareesh, and M. Arvind, “Electronic Warfare: Issues and Challenges for Emitter Classification”, Def. Sci. J. 201161(3), 228‒234 (2011).
  3.  J. Dudczyk and A. Kawalec, “Specific emitter identification based on graphical representation of the distribution of radar signal parameters”, Bull. Pol. Acad. Sci. Tech. Sci. 63(2), 391‒396 (2015).
  4.  Q. Xu, R. Zheng, W. Saad, and Z. Han, “Device Fingerprinting in Wireless Networks: Challenges and Opportunities”, IEEE Commun. Surv. Tutor. 18(1), 94‒104 (2016).
  5.  P.C. Adam and G.L. Dennis, “Identification of Wireless Devices of Users Who Actively Fake Their RF Fingerprints With Artificial Data Distortion”, IEEE Trans. Wirel. Commun. 14(11), 5889‒5899 (2015).
  6.  N. Zhou, L. Luo, G. Sheng, and X. Jiang, “High Accuracy Insulation Fault Diagnosis Method of Power Equipment Based on Power Maximum Likelihood Estimation”, IEEE Trans. Power Deliv. 34(4), 1291‒1299 (2019).
  7.  S. Guo, R.E. White, and M. Low, “A comparison study of radar emitter identification based on signal transients”, IEEE Radar Conference, Oklahoma City, 2018, pp. 286‒291.
  8.  Q. Wu, C. Feres, D. Kuzmenko, D. Zhi, Z. Yu, and X. Liu, “Deep learning based RF fingerprinting for device identification and wireless security”, Electron. Lett. 54(24), 1405‒1407 (2018).
  9.  A. Kawalec, R. Owczarek, and J. Dudczyk, “Karhunen-Loeve transformation in radar signal features processing”, International Conference on Microwaves, Krakow, 2006.
  10.  B. Danev and S. Capkun, “Transient-based identification of wireless sensor nodes”, Information Processing in Sensor Networks, San Francisco, 2009, pp. 25‒36.
  11.  R.W. Klein, M.A. Temple, M.J. Mendenhall, and D.R. Reising, “Sensitivity Analysis of Burst Detection and RF Fingerprinting Classification Performance”, International Conference on Communications, Dresden, 2009, pp. 641‒645.
  12.  C. Bertoncini, K. Rudd, B. Nousain, and M. Hinders, “Wavelet Fingerprinting of Radio-Frequency Identification (RFID) Tags”, I IEEE Trans. Ind. Electron. 59(12), 4843‒4850 (2012).
  13.  Z. Shi, X. Lin, C. Zhao, and M. Shi, “Multifractal slope feature based wireless devices identification”, International Conference on Computer Science and Education, Cambridge, 2015, pp. 590‒595.
  14.  C.K. Dubendorfer, B.W. Ramsey, and M.A. Temple, “ZigBee Device Verification for Securing Industrial Control and Building Automation Systems”, International Conference on Critical Infrastructure Protection ,Washington DC, 2013, pp. 47‒62.
  15.  D.R. Reising and M.A. Temple, “WiMAX mobile subscriber verification using Gabor-based RF-DNA fingerprints”, International Conference on Communications, Ottawa, 2012, pp. 1005‒1010.
  16.  Y. Li, Y. Zhao, L. Wu, and J. Zhang, “Specific emitter identification using geometric features of frequency drift curve”, Bull. Pol. Acad. Sci. Tech. Sci. 66, 99‒108 (2018).
  17.  Y. Yuan, Z. Huang, H. Wu, and X. Wang, “Specific emitter identification based on Hilbert-Huang transform-based time-frequency-energy distribution features”, IET Commun. 8(13), 2404‒2412 (2014).
  18.  T.L. Carroll, “A nonlinear dynamics method for signal identification”, Chaos Interdiscip. J. Nonlinear Sci. 17(2), 023109 (2007).
  19.  D. Sun, Y. Li, Y. Xu, and J. Hu, “A Novel Method for Specific Emitter Identification Based on Singular Spectrum Analysis”, Wireless Communications & Networking Conference, San Francisco, 2017, pp. 1‒6.
  20.  Y. Jia, S. Zhu, and G. Lu, “Specific Emitter Identification Based on the Natural Measure”, Entropy 19(3), 117 (2017).
  21.  L. Lacasa, B. Luque, J. Luque, and J.C. Nuno, “The visibility graph: A new method for estimating the Hurst exponent of fractional Brownian motion”, Europhys. Lett. 86(3), 30001‒30005 (2009).
  22.  M. Ahmadlou and H. Adeli, “Visibility graph similarity: A new measure of generalized synchronization in coupled dynamic systems”, Physica D 241(4), 326‒332 (2012).
  23.  S. Zhu and L. Gan, “Specific emitter identification based on horizontal visibility graph”, IEEE International Conference Computer and Communications, Chengdu, 2017, pp. 1328‒1332.
  24.  B. Luque, L. Lacasa, F. Ballesteros, and J. Luque, “Horizontal visibility graphs: Exact results for random time series”, Phys. Rev. E. 80(4), 046103 (2009).
  25.  W. Jiang, B. Wei, J. Zhan, C. Xie, and D. Zhou, “A visibility graph power averaging aggregation operator: A methodology based on network analysis”, Comput. Ind. Eng. 101, 260‒268 (2016).
  26.  M. Wajs, P. Kurzynski, and D. Kaszlikowski, “Information-theoretic Bell inequalities based on Tsallis entropy”, Phys. Rev. A. 91(1), 012114 (2015).
  27.  J. Liang, Z. Huang, and Z. Li, “Method of Empirical Mode Decomposition in Specific Emitter Identification”, Wirel. Pers. Commun. 96(2), 2447‒2461, (2017).
  28.  A.M. Ali, E. Uzundurukan, and A. Kara, “Improvements on transient signal detection for RF fingerprinting”, Signal Processing and Communications Applications Conference (SIU), Antalya, 2017, pp. 1‒4.
  29.  Y. Yuan, Z. Huang, H. Wu, and X. Wang, “Specific emitter identification based on Hilbert-Huang transform-based time-frequency-energy distribution features”, IET Commun. 8(13), 2404‒2412 (2014).
  30.  D.R. Kong and H.B. Xie, “Assessment of Time Series Complexity Using Improved Approximate Entropy”, Chin. Phys. Lett. 28(9), 90502‒90505 (2011).
  31.  T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System”, Knowledge Discovery and Data Mining, San Francisco, 2016, pp. 785‒794.
  32.  G. Huang, Y. Yuan, X. Wang, and Z. Huang, “Specific Emitter Identification Based on Nonlinear Dynamical Characteristics”, Can. J. Electr. Comp. Eng.-Rev. Can. Genie Electr. Inform. 39(1), 34‒41 (2016).
  33.  D. Sun, Y. Li, Y. Xu, and J. Hu, “A Novel Method for Specific Emitter Identification Based on Singular Spectrum Analysis”, Wireless Communications and Networking Conference, San Francisco, 2017, pp. 1‒6.
Go to article

Authors and Affiliations

Ke Li
1 2 3
ORCID: ORCID
Wei Ge
1 2
ORCID: ORCID
Xiaoya Yang
1 2
Zhengrong Xu
1

  1. School of Information and Computer, Anhui Agricultural University, Hefei, Anhui, 230036, China
  2. Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, Anhui, 230036, China
  3. Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai, 200072, China
Download PDF Download RIS Download Bibtex

Abstract

The development of combustion systems construction is associated with the possibility of increasing the thermal or overall efficiency of an internal combustion engine. The combustion systems currently in use (mainly related to direct fuel injection) are increasingly being replaced by hybrid systems, including direct and indirect injection. Another alternative is the use of prechambers in new combustion systems. This article concerns the thermodynamic aspect of this issue – namely, the assessment of the inter-chamber flow of a marine engine equipped with a prechamber combustion spark ignition system. The research was carried out using mainly one-dimensional simulation apparatus, and detailed analyses were presented using three-dimensional modeling. The tests included the engine model at medium load. Differences in mass flows were shown at different diameters and different numbers of holes from the preliminary chamber (while maintaining the same cross-sectional area). Similar values of excess air coefficient during ignition of the fuel dose in the prechamber were observed, which resulted in changes in the flow between the prechamber and the main chamber. The differences in mass flow affected the temperatures achieved in the individual combustion chambers. Based on three-dimensional analyses, the mass transfer rate between the chambers and the temperature distribution were assessed during fuel ignition initiated in the prechamber.
Go to article

Bibliography

  1.  P. Tarnawski and W. Ostapski, “Pulse powered turbine engine concept – numerical analysis of influence of different valve timing concepts on thermodynamic performance”, Bull. Pol. Acad. Sci. Tech. Sci. 66(3), 373‒382 (2018), doi: 10.24425/123444.
  2.  N. Gombosuren, O. Yoshifumi, and A. Hiroyuki, “A charge possibility of an unfueled prechamber and its fluctuating phenomenon for the spark ignited engine”, Energies 13(2), 303 (2020), doi: 10.3390/en13020303.
  3.  M. Günther (ed.), Ignition Systems for Gasoline Engines, 4th International Conference. Verlag expert, Berlin, 2018. doi: 10.5445/ IR/1000088324.
  4.  A. Shah, “Improving the efficiency of gas engines using pre-chamber ignition”, PhD Thesis, Lund University, 2015.
  5.  P. Hlaing, M.E. Marquez, V.S.B. Shankar, E. Cenkar, M.B. Houidi, and B. Johansson, “A study of lean burn pre-chamber concept in a heavy duty engine”, SAE Tech. Paper 2019‒24‒0107 (2019), doi: 10.4271/2019-24-0107.
  6.  A. Jamrozik and W. Tutak, “Theoretical analysis of air-fuel mixture formation in the combustion chambers of the gas engine with two- stage combustion system”, Bull. Pol. Acad. Sci. Tech. Sci., 62(4), 779‒790 (2014), doi: 10.2478/bpasts-2014-0085.
  7.  J. Benajes, R. Novella, J. Gomez-Soriano, P.J. Martinez-Hernandiz, C. Libert, and M. Dabiri, “Evaluation of the passive pre-chamber ignition concept for future high compression ratio turbocharged spark-ignition engines”, Appl. Energ. 248, 576‒588 (2019), doi: 10.1016/j. apenergy.2019.04.131.
  8.  A. Shah, P. Tunestal, and B. Johansson, “Effect of pre-chamber volume and nozzle diameter on pre-chamber ignition in heavy duty natural gas engines”, SAE Tech. Paper 2015‒01‒0867 (2015), doi: 10.4271/2015-01-0867.
  9.  W. Attard, N. Fraser, P. Parsons, and E. Toulson, “A turbulent jet ignition pre-chamber combustion system for large fuel economy improvements in a modern vehicle powertrain”, SAE Int. J. Engines 3(2), 20‒37 (2010), doi: 10.4271/2010-01-1457.
  10.  I. Pielecha, K. Wisłocki, W. Cieślik, and Ł. Fiedkiewicz, “Prechamber selection for a two stage turbulent jet ignition of lean air-gas mixtures for better economy and emission”, 17th International Conference Heat Transfer and Renewable Sources of Energy (HTRSE-2018), E3S Web of Conferences, 70, 03010 (2018), doi: 10.1051/e3sconf/20187003010.
  11.  L.O. Guelder, “Turbulent premixed flame propagation models for different combustion regimes”, 23rd Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, USA, 1990, doi: 10.1016/S0082-0784(06)80325-5.
  12.  B.F. Magnussen and B.H. Hjertager, “On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion”, 16th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, USA, 1976, doi: 10.1016/S0082- 0784(77)80366-4.
  13.  AVL BOOST. AVL AST Documentation 2019.
  14.  M. Gholamisheeri, I.S. Wichman, and E.Toulson, “A study of the turbulent jet flow field in a methane fuelled turbulent jet ignition (TJI) system”, Combust. Flame 183, 194‒206 (2017), doi: 10.1016/j.combustflame.2017.05.008.
  15.  G. Gentz, B. Thelen, M. Gholamisheeri, P. Litke, A. Brown, J. Hoke, and E. Toulson, “A study of the influence of orifice diameter on a turbulent jet ignition system through combustion visualization and performance characterization in a rapid compression machine”, Appl. Therm. Eng. 81, 399‒411 (2015), doi: 10.1016/j.applthermaleng.2015.02.026.
Go to article

Authors and Affiliations

Ireneusz Pielecha
1

  1. Poznan University of Technology, Faculty of Civil and Transport Engineering, Piotrowo 3, 60-965 Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents a new generation of ultra-fast hybrid switching systems (USH) for reliable, ultra-fast protection of various medium and low voltage DC systems (MVDC and LVDC). The DC switch-off takes place in a vacuum chamber (VC) cooperating with a semiconductor module using current commutation of natural or forced type. Against the background of the current state of science and technology, the paper depicts the basic scopes of USH applications and their particular suitability for operation in high magnetic energy DC circuits. In the case of DC system failures, this magnetic energy should be dissipated outside the system as soon as possible. Usually, magnetic blow-out switches (MBOS) with relatively low operating speed are used for this purpose. The article describes the theoretical basis and principles of construction of two types of novel USH systems: a direct current switching system (DCSS) and a direct current ultra-fast hybrid modular switch (DCU-HM). The DCSS family is designed for quench protection of superconducting electromagnets’ coils in all areas of application. The DCU-HM family is designed for the protection of all systems or vehicles of DC electrical traction and for related industrial applications. The conducted comparative analysis of the effectiveness of USH with respect to MBOS shows clear technical advantages of the new generation switching systems over MBOS. List of abbreviations used in the article is provided at the end.
Go to article

Bibliography

  1.  A.N. Greenwood, P. Barkan, and W.C. Kracht, “HVDC vacuum circuit breakers”, IEEE Trans. Power App. Syst. PAS-91(4), 1575‒1588 (1972).
  2.  C.W. Kimblin et al., “Development of a current limiter using vacuum arc commutation”, EPRI EL-393 Research Proj. 564‒1, USA, 1977.
  3.  T. Senda, T. Tamagawa, K. Higuchi, T. Horiuchi, and S. Yanabu, “Development of HVDC circuit breaker based on hybrid interruption scheme”, IEEE Trans. Power App. Syst. PAS-103(3), 545–552 (1984).
  4.  M. Bartosik, “Progress in DC breaking”, Proc. 8th Int. Conf. Switching Arc Phenomena SAP 1997, part 2, Lodz, Poland, 1997, pp. 29–41.
  5.  M. Bartosik, R. Lasota, and F.Wójcik, “New generation of D.C. circuit breakers”, Proc. 3rd Int. Conf. on Electrical Contacts, Arcs, Apparatus and Appl. (IC-ECAAA), Xian, China, 1997, pp. 349–353.
  6.  A. Daibo, Y. Niwa, N. Asari, W. Sakaguchi, K. Takimoto, K. Ka-naya, and T. Ishiguro, “High-speed current interruption performance of hybrid DCCB for HVDC transmission system”, IEEE J. Ind. Appl. 8(5), 835–842 (2019).
  7.  N. Xia, J. Zou, D. Liang, Y. Gao, Z. Huang, and Y. Wang, “Investigations on the safe stroke of mechanical HVDC vacuum circuit breaker”, J. Eng. (IET) 16, 3022–3025 (2019).
  8.  R. Rodrigues, Y. Du, A. Antoniazzi, and P. Cairoli, “A Review of Solid-State Circuit Breakers”, IEEE Trans. Power Electron. 36(1), 364‒377, (2021).
  9.  M. Wilson, “Superconducting Magnets for Accelerators”, CAS, 2006. [Online]. Available: https://cas.web.cern.ch/sites/cas.web.cern.ch/ files/lectures/zakopane-2006/wilson-lect.pdf
  10.  F. Wójcik, “Ultra-fast shutdown of DC power circuits”, Sc. Bull. 1071, TUL, Sc. Papers 396. Habilitation thesis. Lodz, Poland, 2010, [in Polish].
  11.  PN-EN 50123-1. Railway applications. Fixed installations. DC switchgear. General requirements. (PL/EU standard).
  12.  M. Bartosik, R. Lasota, and F. Wójcik, “Direct current-limiting vacuum circuit breaker”, Proc. 12th Symp. “Electrical Phenomena in Vacuum” ZEP-91, Sc. Fasc. Elektryka 39, Tech. Univ. of Poznan, Poland, 1991, pp. 21–24.
  13.  M. Bartosik, R. Lasota, and F. Wójcik, “Arcless D.C. hybrid circuit breaker”, Proc. 8th Int. Conf. Switching Arc Phenomena SAP-97, Lodz, Poland, 1997, pp. 115–119.
  14.  M. Bartosik, R. Lasota, and F. Wójcik, “New type of DC vacuum circuit-breakers for locomotives”, Proc. 9th Int. Conf. Switching Arc Phenomena SAP-2000(1), Conf. Mat. Lodz, Poland, 2001, pp. 49–53.
  15.  M. Bartosik, R. Lasota, and F. Wójcik, “Ultra-High-Speed D.C. Hybrid Circuit-Breakers of DCNT Type for Substations of Urban and Mine Traction”, Proc. of the 10th Int. Conf. Switching Arc Phenomena, Lodz, Poland, 2005, pp. 360–364.
  16.  M. Bartosik, P. Borkowski, E. Raj, and F. Wójcik, “The New Family of Low-Voltage, Hyper-Speed Arcless, Hybrid, DC Circuit Breakers for Urban Traction Vehicles and Related Industrial Applications”, IEEE Trans. Power Del. 34(1), 251–259 (2019).
  17.  Ch. Peng, A. Huang, I. Husain, B. Lequesne, and R. Briggs, “Drive circuits for ultra-fast and reliable actuation of Thomson coil actuators used in hybrid AC and DC circuit breakers”, IEEE Appl. Power Electronics Conf. and Exp. (APEC), 2016, pp. 2927–2934.
  18.  K. Krasuski, P. Berowski, A. Dzierżyński, A. Hejduk, S. Kozak, and H. Sibilski, “Analysis of arc in a vacuum chamber with an AMF”, Proc. Electrotech. Inst. 269, 91–99 (2015).
  19.  P.G. Slade, The Vacuum Interrupter Theory, Design and Application, CRC Press, 2007.
  20.  “Vacuum interrupters”, Eaton Holec Cath. No. 3.9.1.
  21.  T. Maciołek, M. Lewandowski, A. Szeląg, and M. Steczek, “Influence of contact gaps on the conditions of vehicles supply and wear and tear of catenary wires in a 3 kV DC traction system”, Bull. Pol. Acad. Sci. Tech. Sci. 68(4), 759–768 (2020).
  22. [22]  The applicable standards: PN-EN 50121-3-2, PN-EN 50123-1,PN-EN 50123-2, PN EN 50123-5, PN-EN 50124-1, PN-EN 50153, PN-EN 50155, PN-EN 50163, PN-EN 60068-1 (also: 60068-2-1, 60068-2-2, 60068-2-52), PN-EN 60077-1 (also: 60077-2), PN-EN 60077-3, PN- EN 60529, UIC Charter 550/1997.
  23.  M. Bartosik, P. Borkowski, and F. Wójcik, “Ultra-fast hybrid, vacuum-semiconductor switch to reduce the effects of quench in DC-powered superconducting induction circuits with high magnetic energies”, Polish Patent Office, P.429439, (DCSS), granted (2021).
  24.  M. Bartosik, P. Borkowski, A. Jeske, Ł. Nowak, and F. Wójcik, “Ultra-fast DC hybrid circuit breaker designed especially for railway traction”, Polish Patent Office, P.429285, (DCU-HM), granted (2021).
  25.  Ł. Kolimas, S. Łapczynski, M. Szulborski, and M. Świetlik, “Low voltage modular circuit breakers: FEM employment for modelling of arc chambers”, Bull. Pol. Acad. Sci. Tech. Sci. 68(1), 61–70 (2020).
Go to article

Authors and Affiliations

Marek Bartosik
1
Piotr Borkowski
1
ORCID: ORCID
Franciszek Wójcik
1

  1. Lodz University of Technology, Department of Electrical Apparatus (DEA TUL), 116 Zeromskiego Street, 90-924 Lodz, Poland

This page uses 'cookies'. Learn more