Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Data

Wyniki wyszukiwania

Wyników: 3
Wyników na stronie: 25 50 75
Sortuj wg:

Autorzy i Afiliacje

Paweł Baranowski
1
ORCID: ORCID
Michał Kucewicz
1
ORCID: ORCID
Mateusz Pytlik
2
ORCID: ORCID
Jerzy Małachowski
1
ORCID: ORCID

  1. Military University of Technology, Faculty of Mechanical Engineering, Institute of Mechanics & Computational Engineering, Gen. S. Kaliskiego 2, 00-908 Warsaw, Poland
  2. Central Mining Institute, Conformity Assessment Body, 40-166 Katowice, Poland

Abstrakt

It is shown that in uncontrollable linear system = Ax + Bu it is possible to assign arbitrarily the eigenvalues of the closed-loop system with state feedbacks u = Kx, K ∈ ℜnm if rank [A B] = n. The design procedure consists in two steps. In the step 1 a nonsingular matrix  M ∈ ℜnm is chosen so that the pair (MA,MB) is controllable. In step 2 the feedback matrix K is chosen so that the closed-loop matrix Ac = A  − BK has the desired eigenvalues. The procedure is illustrated by simple example.

Przejdź do artykułu

Autorzy i Afiliacje

Tadeusz Kaczorek
1
ORCID: ORCID

  1. Białystok University of Technology, ul. Wiejska 45A, 15-351 Białystok, Poland

Abstrakt

The modeling of P-waves has essential applications in seismology. This is because the detection of the P-waves is the first warning sign of the incoming earthquake. Thus, P-wave detection is an important part of an earthquake monitoring system. In this paper, we introduce a linear computational cost simulator for three-dimensional simulations of P-waves. We also generalize our formulations and derivation for elastic wave propagation problems. We use the alternating direction method with isogeometric finite elements to simulate seismic P-wave and elastic propagation problems. We introduce intermediate time steps and separate our differential operator into a summation of the blocks, acting along the particular coordinate axis in the sub-steps. We show that the resulting problem matrix can be represented as a multiplication of three multi-diagonal matrices, each one with B-spline basis functions along the particular axis of the spatial system of coordinates. The resulting system of linear equations can be factorized in linear O (N) computational cost in every time step of the semi-implicit method. We use our method to simulate P-wave and elastic wave propagation problems. We derive the condition for the stability for seismic waves; namely, we show that the method is stable when τ < C min{ hx,hy,hz}, where C is a constant that depends on the PDE problem and also on the degree of splines used for the spatial approximation. We conclude our presentation with numerical results for seismic P-wave and elastic wave propagation problems.
Przejdź do artykułu

Autorzy i Afiliacje

Marcin Łoś
1
ORCID: ORCID
Pouria Behnoudfar
2
ORCID: ORCID
Mateusz Dobija
3
Maciej Paszynski
1
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, al. Mickiewicza 30, 30-059 Krakow, Poland
  2. Mineral Resources, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Kensington, Perth, Western Australia
  3. Jagiellonian University, Faculty of Astronomy, Physics and Applied Computer Science, Kraków, Poland

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji