Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 13
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article reviews selected systems and technological variants of biogas production. Biogas installations and methods of biogas production were characterized in terms of control and measurement. The required technical and technological criteria for biogas production and treatment were indicated. The conditions of biorefining in the context of the generation of new products were analysed. Based on the amount of manure produced in pig production, the potential of biogas production in Poland was indicated based on the visualization of the biogas production potential by poviats in Poland. The substrate in the form of slurry, manure and other agricultural waste for the production of agricultural biogas in Poland was analysed quantitatively. The economic aspects in the agricultural biogas plant sector were revealed, indicating the operation of the economies of scale for this industry sector.
An example of a pilot biogas production for anaerobic digestion using pig slurry is presented. The paper presents pre-liminary results of experimental studies on the course of changes in the biogas volume flow for the average daily production of agricultural biogas and the qualitative composition of agricultural biogas produced from pig slurry. The results of the measurements show a clear influence of the hydrodynamic mixing system of the substrate for the evaluation of the biogas flow through the adhesive bed in the context of agricultural biogas production in the range (1–14) m3 d–1.
Go to article

Authors and Affiliations

Grzegorz Wałowski
1
ORCID: ORCID

  1. Institute of Technology and Life Sciences, Falenty, Department of Renewable Energy, Poznań Branch, ul. Biskupińska 67, 60-463 Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

This study presents the results of research on the effect of long-term use of phosphorus fertilizers on permanent sugar beet crops for more than 50 years and on the transformation of phosphate forms on light chestnut soil and its yield. Our work aims to establish the main factors of quantitative and qualitative changes in various phosphates in light chestnut soil. Despite the large amount of practical material, the influence duration of phosphorus fertilizer application has not been sufficiently studied on the irrigated soils of Kazakhstan. It should be noted that the current study was carried out in long-term stationary experimental sites for the production of sugar beet with permanent sowing. The introduction of phosphate fertilizers primarily on the permanent crops of sugar beets in the same norms contributes to a more significant increase in gross phosphorus reserves. The soil content of gross phosphorus for 58 years on the control and nitrogen-potassium variants show practically no changes. Furthermore, when phosphorus fertilizers are applied on the variant with the annual application of a single norm of phosphorus and its amount for 58 years (4400 kg∙ha–1 of application doses) its content increased by 2660 mg∙kg–1, and with the introduction of its one and a half norms (6600 kg of application doses) by 2860 mg∙kg–1 of soil.
Go to article

Authors and Affiliations

Balnur Alimbekova
1
ORCID: ORCID
Rakhimzhan Yeleshev
1 2
ORCID: ORCID
Zhenisgul Bakenova
ORCID: ORCID
Aigerim Shibikeyeva
ORCID: ORCID
Marzhan Balkozha
ORCID: ORCID

  1. Kazakh National Agrarian University, Faculty of Agronomy, Abay avenue 8, Almaty 050010, Kazakhstan
  2. National Academy of Sciences of the Republic of Kazakhstan, Almaty, Kazakhstan
Download PDF Download RIS Download Bibtex

Abstract

The study involved experimental work implemented from April 2014 until March 2017. Its purpose was to observe grape production quality parameters, such as yield, water productivity, berry size and bio-mass. Different irrigation methods, such as drip irrigation (DI), drip irrigation with plastic mulching (DIPM), drip irrigation with organic mulching (DIOM), subsur-face irrigation with stone column (SISC), subsurface irrigation with mud pot (SIMP), and subsurface irrigation with plastic bottles (SIPB) have been used during the experimental work. The crop has been irrigated following the CROPWAT-8.0 model developed by the FAO. Climate parameters are obtained from the automatic weather station located near the experi-mental field. Based on experimental results and analyses, it has been observed that the drip irrigation with the plastic mulching method is the best for irrigation in terms of the grape yield comparing with all other methods due to its highest productivity of 35–40%. Subsurface irrigation with the plastic bottle method is found to be suitable as it gives 20% higher yield than the traditional drip irrigation method. The SIPB method shows the cost-benefit ratio of 112.3, whereas the DIPM method had the ratio of 36.6. Based on the cost-benefit analysis, it is concluded that the SIPB method is economically more viable as compared with all other methods. Hence, based on the findings, it is recommended to use drip irrigation with a plastic mulch-ing and drip irrigation with a plastic bottle as the best options to achieve grape productivity while using minimum water.
Go to article

Authors and Affiliations

Sharad J. Kadbhane
1
ORCID: ORCID
Vivek L. Manekar
2
ORCID: ORCID

  1. Savitribai Phule Pune University, NDMVPS KBT College of Engineering, Nashik, Udoji Maratha Boarding Campus, 422013, Nashik, India
  2. Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
Download PDF Download RIS Download Bibtex

Abstract

The study has been carried out at two experimental sites. It aims to assess the impact of the reuse of raw wastewater, purified and diluted with conventional water on the physicochemical quality of soils compared to irrigated soils with con-ventional drilled water and non-irrigated soil. The obtained results show that the electrical conductivity EC and sodium gradually increase in all the plots irrigated with wastewater. Additionally, a slight increase in the pH levels at the first site and a slight decrease in the second site was seen, but at both sites the soils remained alkaline. The infiltration rate of water slide decreases in relation to the amount of irrigation, especially in plots irrigated by raw and treated wastewater. For the same plots, the values of organic matter increased, and the values obtained for the exchangeable sodium percentage (ESP) became high in the third year and reached 17.0% and 16.7% respectively.
Go to article

Authors and Affiliations

Smail Njimat
1
ORCID: ORCID
Fouad Elfettahi
2
Hajar Griou
1
ORCID: ORCID
Mohammed Y. El Brouzi
3
Mohammed Aboulouafa
1
ORCID: ORCID
Said Ibn Ahmed
1

  1. Laboratory of Materials, Electrochemistry and Environment, University Ibn Tofail, Faculty of Sciences, Department of Chemistry, 14200, Kenitra, Morocco
  2. Agricultural Technical Institute, Ain Taoujdate, El Hajeb, Morocco
  3. Laboratory of Genetics, Neuroendocrinobiology and Biotechnology. Faculty of Sciences, Department of Biology
Download PDF Download RIS Download Bibtex

Abstract

Developments in agriculture, industry, and urban life have caused the deterioration of water resources, such as rivers and reservoirs in terms of their quality and quantity. This includes the Saguling Reservoir located in the Citarum Basin, Indonesia. A review of previous studies reveals that the water quality index ( WQI) is efficient for the identification of pollution sources, as well as for the understanding of temporal and spatial variations in reservoir water quality. The NSFWQI (The National Sanitation Foundation water quality index) is one of WQI calculation methods. The NSFWQI is commonly used as an indi-cator of surface water quality. It is based on nitrate, phosphate, turbidity, temperature, faecal coliform, pH, DO, TDS, and BOD. The average NSFWQI has been 48.42 during a dry year, 43.97 during a normal year, and 45.82 during a wet year. The WQI helped to classify water quality in the Saguling Reservoir as “bad”. This study reveals that the strongest and most significant correlation between the parameter concentration and the WQI is the turbidity concentration, for which the coeffi-cient correlation is 0.821 in a dry year, and faecal coli, for which the coefficient correlation is 0.729 in a dry year. Both parameters can be used to calculate the WQI. The research also included a nitrate concentration distribution analysis around the Saguling Reservoir using the Inverse Distance Weighted method.
Go to article

Authors and Affiliations

Mariana Marselina
1
ORCID: ORCID
Anwar Sabar
1
Nurul Fahimah
1
ORCID: ORCID

  1. Bandung Institute of Technology, Faculty of Civil and Environmental Engineering, Jl. Ganesha No 10, Bandung, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

FAO AquaCrop model ver. 6.1 was calibrated and validated by means of an independent data sets during the harvesting seasons of 2016/2017 and 2017/2018, at El Noubaria site in western north of Egypt. To assess the impact of the increase in temperature and CO2 concentration on potato biomass and tuber yield simulations, experiments were carried out with four downscaled and bias-corrected of General Circulation Models (GCMs) data sets based on the fifth phase of the Coupled Model Intercomparison Project (CMIP5) scenarios under demonstrative Concentration Trails (RCPs) 4.5 and 8.5, selected for 2021–2040 and 2041–2060. The study showed that the model could satisfactorily simulate potato canopy cover, biomass, harvest and soil water content under various irrigation treatments. The biomass and yield decreased for all GCMs in both future series 2030s and 2050s. Biomass reduction varied between 5.60 and 9.95%, while the reduction of the simulated yield varied between 3.53 and 7.96% for 2030. The lowest values of biomass and yield were achieved by HadGEM2-ES under RCP 8.5 with 27.213 and 20.409 Mg∙ha–1, respectively corresponding to –9.95 and –7.96% reduction. The lowest reductions were 5.60 and 3.53% for biomass and yield, respectively, obtained with MIROC5 under RCP 8.5 for 2030. Reductions in biomass and yield in 2050 were higher than in 2030. The results are showing that higher temperatures shortened the growing period based on calculated growing degree days (GDD). Therefore, it is very important to study changing sowing dates to alleviate the impact of climate change by using field trials, simulation and deep learning models.
Go to article

Authors and Affiliations

Osama Dewedar
1 2
ORCID: ORCID
Finn Plauborg
2
ORCID: ORCID
Ahmed El-Shafie
1
ORCID: ORCID
Abdelbaset Marwa
1
ORCID: ORCID

  1. Water Relations and Field Irrigation Department, Agricultural and Biological Research Division, National Research Centre, 33 El Buhouth St. Dokki, P.O. Box 12622, Cairo, Egypt
  2. Aarhus University, Department of Agroecology, Tjele, Denmark
Download PDF Download RIS Download Bibtex

Abstract

In many regions of the world, including Egypt, water shortages threaten food production. An irrigation deficient strategy in dry areas has been widely investigated as a valuable and sustainable approach to production. In this study, the dry matter and grain yield of wheat was decreased by reducing the amount of irrigation water as well as the volume of the root system. As a result of this, there was an increase the soil moisture stress. This negatively affected the absorption of water and nutrients in the root zone of wheat plants, which ultimately had an effect on the dry matter and grain yield of wheat. The values of dry matter and grain yield of wheat increased with the ʻSakha 94ʼ variety compared to the ʻSakha 93ʼ class. It is possible that this was due to the increase in the genetic characteristic of the root size with the ʻSakha 94ʼ variety compared to the ʻSakha 93ʼ class, as this increase led to the absorption of water and nutrients from a larger volume of root spread. Despite being able to increase the water productivity of wheat by decreasing the amount of added irrigation water, the two highest grain yield values were achieved when adding 100% and 80% of irrigation requirements ( IR) needed to irrigate the wheat and no signif-icant differences between the yield values at 100% and 80% of IR were found. Therefore, in accordance with this study, the recommended irrigation for wheat is at 80% IR which will provide 20% IR. When comparing the water productivity of two wheat varieties in study, it becomes clear that ʻSakha 94ʼ was superior to ʻSakha 93ʼ when adding the same amount of irrigation water, and this resulted in increased wheat productivity for ʻSakha 94ʼ. The SALTMED results confirmed good accuracy (R2: 0.92 to 0.98) in simulating soil moisture, roots volume, water application efficiency, dry matter, and grain yield for two varieties of wheat under deficit irrigation conditions. Whilst using sprinkler irrigation system under sandy soils in Egypt.
Go to article

Authors and Affiliations

Ramadan E. Abdelraouf
1
Mohamed A. El-Shawadfy
1
Osama M. Dewedar
1
Mahmoud Hozayn
2

  1. National Research Center, Department of Field Irrigation and Water Relations, 33 EL Bohouth St., Dokki, Giza, 12622, Egypt
  2. National Research Center, Field Crops Research Department, Giza, Egypt
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the study is to analyze the current state of the cast iron production and to predict production volume and cost in the near future based on the analysis results. Cast iron is one of the most common materials used in various industrial sectors. Cast iron scrap processing is the least expensive and saves both money and time. It is produced both in Russia and abroad and is one of the export types. Cast iron production significantly influences other industrial sectors. All this confirms the relevance of the study. The novelty of the study consists in the identification of the leaders among the cast-iron producers in the world and Russian metallurgical companies, as well as the determination of trends in its production at the present stage of economic development. The increasing consolidation level of cast iron producers has been revealed: China, India, Japan, and Russia represented 85% of the cast iron global production in 2019. In Russia, nine metallurgical companies account for 80% of cast iron production. In general, cast iron production in the world is stable and the import share of cast iron is about 4%. Cast iron prices tend to decline. The work identifies the lower and upper limits of the possible range of the cast iron prices. The authors conclude that the declining prices of cast iron in Russia may make its production unprofitable.
Go to article

Bibliography

[1] Arab, N. (2017). Competitive nucleation in grey cast irons. Archives of Foundry Engineering. 17(4), 185-189.
[2] Metalbulletin.ru (2020). Cast iron: the first candidate for decline? Retrieved from: https://www.metalbulletin.ru/a/101.
[3] Hannapel, J. & Schmeisse, C. (2020). New EPA air emissions standards for iron and steel foundries. Modern Casting. 11, 42-45.
[4] Lipshaw, J. (2020). Environmental impact across their life cycles. Modern Casting, 10, 34-38.
[5] Promzn.ru (2020). Features of steel production: methods, technologies and raw materials. Retrieved from: https://promzn.ru/metallurgiya/proizvodstvo-stali.html.
[6] Stroiset.ru (2020). Analysis and trends in the development of the cast iron market. Retrieved from: https://www.stroiset.ru/analiz-i-tendencii-razvitiya-rynka-chuguna.
[7] Metallurgicheskii byulleten (2020). Chugunnye reki i rucheiki. [Cast iron rivers and rivulets. Metallurgical bulletin]. Retrieved from: https://www.metaltorg.ru/analytics /black/?id=759/.
[8] MIT Emerging Trends Report (2013). Cambridge, MA: Massachusetts Institute of Technology. Retrieved from: http://2013.forinnovations.org/upload/MIT_Technology_Review.pdf.
[9] World Steel Association. 50 years of the World Steel Association. Retrieved from: https://www.worldsteel.org/ publications/bookshop/product-details.~50-years-of-the-World-Steel-Association~PRODUCT~50-years-of-the-World-Steel-Association~.html.
[10] Metallosnabzhenie i sbyt: internet-zhurnal. (2018). Kitai prodolzhit sokrashchenie izbytochnykh moshchnostei. [China will continue to reduce excess capacity. Metal supply and sales]. Retrieved from: http://www.metalinfo.ru/ru/ news/100765.
[11] Shatokha, V. (2016). Post-Soviet issues and sustainability of ferrous metallurgy in Eastern Europe. Mineral Processing and Extractive Metallurgy, 3, 1-8.
[12] Businesstat (2017). Analiz mirovogo rynka chuguna v 2012-2016 gg, prognoz na 2017-2021 gg [Analysis of the global cast iron market between 2012 and 2016; the outlook for the period from 2017 to 2021]. Retrieved from: https://marketing.rbc.ru/research/39673//
[13] Profile 2018/2019. World Steel Association [electronic resource] Retrieved from: https://www.worldsteel.org/ publications/bookshop/product-details.~Profile-2017-2018~PRODUCT~Profile2017~.html.
[14] Steel Statistical Yearbook 2019. World Steel Association [electronic resource] Retrieved from: http:// https://www.worldsteel.org/publications/bookshop/product-details.~Steel-Statistical-Yearbook-2017~PRODUCT~SSY2017~.html.
[15] ACG (2020). Rynok chuguna v Rossii. Tekushchaya situatsiya i prognoz 2020-2024 gg. [Cast iron market in Russia. The current situation and the outlook for the period from 2020 to 2024]. Retrieved from: https://alto-group.ru/otchot/rossija/380-rynok-chuguna-tekushhaya-situaciya-i-prognoz-2014-2018-gg.html/.

Go to article

Authors and Affiliations

S.S. Golubev
1
V.D. Sekerin
1
A.E. Gorokhova
1
G.V. Komlatskiy
2
Y.I. Arutyunyan
2

  1. Moscow Polytechnic University, Bolshaya Semenovskaya Street, 38, Moscow, 107023, Russia
  2. Kuban State Agrarian University, Kalinina Street, 13, Krasnodar, 350044, Russia
Download PDF Download RIS Download Bibtex

Abstract

In foundry, metal casting can be done with various methods. One of the most important methods preferred around the world is sand casting. Ester curable alkaline phenolic resins have produced to make sand molds by No-bake systems. They must have specific properties to make sand casting efficient and reliable. Production of these resins depends on some fossil raw-materials like phenol. To investigate more sustainable and green resin synthesis method, lots experiment have been done by substitution of phenol with renewable alternative phenolic materials like resorcinol, lignosulphonates and tannic acid and its derivatives. Different properties of resins were produced with competitive performance with the market product, ÇKE Alfanol A 72 No-Bake Resin. Without loss of performance, calcium lignosulfonate was used in polymer synthesis at the rate of 15% instead of phenol. On the other hand, the reaction in which lignin and resorcinol were combined instead of phenol by reducing it by 25% gave better results in terms of mechanical and thermal properties. Thermal properties were investigated for resorcinol and lignin modified resins by using TGA-DSC and mechanical performance of cured sand core sample were tested by Simpson Sand Strength Testing Machine as compression strength as N/cm2.. After laboratory testing casting performance of new resins are compared with two different companies’ resins in steal casting demo. Experimental results were matched with casting trail and no defect was detected.
Go to article

Bibliography

[1] Pilato, L. (2010). Phenolic Resins: A century of progress (pp. 451-502). Germany Berlin: Springer Verlag. [2] Bindernagel, E. (1983). Molding sands and molding processes in foundry engineering (in German). Germany Dusseldorf: Giesserei-Verlag.
[3] Dressler, H. (1994). Resorcinol/formaldehyde resins-adhesives for wood, and other nonrubber applications. In: Resorcinol. (pp.85-124). Topics in Applied Chemistry. Springer, Boston, MA.
[4] Danielson, B. & Simonson, R. (1998). Kraft lignin in phenol formaldehyde resin. Part 1-2. Evaluation of an industrial trial. Journal of Adhesion Science and Technology. 12(9), 941-946. https://doi.org/10.1163/156856198X00551.
[5] Ramires, E.C. & Frollini, E. (2012). Tannin-phenolic resins: Synthesis, characterization, and application as matrix in biobased composites reinforced with sisal fibers. Composites: Part B. 43, 2851-2860. DOI: 10.1016/j.compositesb.2012.04.049.
[6] Sellers Jr., T. & Miller Jr., G.D. (2004). Laboratory manufacture of high moisture southern pine strandboard bonded with three tannin adhesive types. Forest Products Journal. 54(12), 296-301. https://doi.org/10.1007/s00107-014-0797-5.
[7] Pizzi, A., Horak, R.M., Ferreiraand, D., Roux, R.D. (1979). Condensates of phenol, resorcinol, phloroglucinol and pyrogallol, as flavonoids A-and B-rings model compounds with formaldehyde, Part 2. Cell. Chem. Technol. 13, 753-762. https://doi.org/10.1002/app.1979.070240618
[8] Fross, K.G. & Fuhrmann, A. (1979). Finnish plywood, partially cleboard, and fiberboard made with a lignin-base adhesive. Forest Products Journal. 29(7), 39-43.
[9] Falkehag, S.I. (1975). Lignin in materials, Applied Pol. Symp. 28, 247-257.
[10] Kuo, M., Hse, C.Y. & Huang, D.H. (1991). Alkali treated kraft lignin as a component in flakeboard resins. Holzforschung. 45(1), 47-54. DOI: 10.1515/hfsg.1991.45.1.47.
[11] Rubio, A., Virginia, M. (2004). Formulation and curing of "resol" type phenol-formaldehyde resins with partial substitution of phenol by modified lignosulfonates.(in Spanish) Universidad Complutense de Madrid, Servicio de Publicaciones.
[12] Ungureanu, E., Ungureanu, O., Capraru, A.M. & Popa, V.I. (2009). Chemical modification and characterization of straw lignin. Cellulose Chemistry & Technology. 43(7-8), 263-269.
[13] Kerns, W.D., Pavkov, K.L., Donofrio, D.J., Gralla, E.J. & Swenberg, J.A. (1983). Carcinogenicity of formaldehyde in rats and mice after long-term inhalation exposure. Cancer Research. 43, 4382-4392.
[14] Mäkinen, M., Kalliokoski, P. & Kangas, J. (1999). Assessment of total exposure to phenol-formaldehyde resin glue in plywood manufacturing. International Archives of Occupational and Environmental Health. 72, 309-314. https://doi.org/10.1007/s004200050380.
[15] Nordman, H., Keskinen, H. & Tuppurainen, M. (1985). Formaldehyde asthma-rare or overlooked? Journal of Allergy and Clinical Immunology. 75, 91-99. https://doi.org/10.1016/0091-6749(85)90018-1.
[16] Khan, S. (2012). Fossil Fuel and the Environment, chapter 8: Singh, B.R. and O. Singh, O. Global trends of fossil fuel reserves and climate change in the 21st century, InTech, India.
[17] Hock, H. & Lang, S. (1944). Auto-oxidation of hydrocarbons, IX. Notice: About peroxides of benzene derivatives. Berichte der Deutschen Chemischen Gesellschaft (A and B Series), 77, 257-264. (in German).
[18] Monni, J., Rainio, J. & Pakkanen, T.T. (2007). Novel two-stage phenol formaldehyde resol resin synthesis. Journal of Applied Polymer Science. 103, 371-379. https://doi.org/10.1002/app.24615.
[19] Knop, A. & Pilato, L.A. (1985). Phenolic Resins-Chemistry, Applications and Performance. (pp. 25-35), XV, Springer-Verlag, Berlin, 3-540-15039-0.
[20] Kuhn, H. (2000).Vol 8 Mechanical Testing and Evalution. ASM Handbook, 9th ed., US: ASM International.
[21] Moulding sands, moulding and core sand mixtures. Methods for determination of compressive, tensile, bending and shearing strength,(in Russian) Russian Standards, GOST 23409.7-78.
[22] Bouajila, J., Raffin, G., Alamercery, S., Waton, H., Sanglar, C. & Grenier-Loustalot, M.F. (2003). Phenolic resins (IV). Thermal degradation of crosslinked resins in controlled atmospheres. Polymers & Polymer Composites. 11(5), 345-357. https://doi.org/10.1177/096739110301100501.
[23] Stephanou, A. & Pizzi, A. (1993). Rapid-curing lignin-based exterior wood adhesives; Part II: Esters acceleration mechanism and application to panel products. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood. 47(6), 501-506. DOI: 10.1515/hfsg.1993.47.6.501.
[24] Lei, H., Pizzi, A., Despres, A., Pasch, H. & Guanben Du. (2005). Ester Acceleration Mechanisms in Phenol-Formaldehyde Resin Adhesives. Journal of Applied Polymer Science. 100, 3075-3093. https://doi.org/10.1002/app.23714.
[25] Mocek, J. (2019). Multiparameter Assessment of the Gas Forming Tendency of Foundry Sands with Alkyd Resins. Archives of Foundry Engineering. 19(2), 41-48. DOI: 10.24425/afe.2019.127114.
[26] Wrona, R. (2015). The Sources of Surface Defects in Castings Produced in Automated Process Lines. Archives of Foundry Engineering. 15(4), 91-94. DOI: 10.1515/afe-2015-0086.

Go to article

Authors and Affiliations

A.E. Güvendik
1
K. Ay
2

  1. Çukurova Kimya Endüstrisi A.Ş., Turkey
  2. Manisa Celal Bayar University, Turkey
Download PDF Download RIS Download Bibtex

Abstract

At present, Al-Si-Cu based alloys (with a typical representative AlSi9Cu3 alloy) represent more than half of the castings used in various industries (automotive, aerospace and electrical engineering). These are most often sub-eutectic (exceptionally eutectic) alloys with a content of 6 to 13 wt. % Si and 1 to 5 wt. % Cu. The aim of the paper is to point out the importance of the evaluation of input raw materials that determines the overall properties of the casting and the costs invested in its production. A negative impact on performance can be expected when using an alloy made up of a high proportion of recycled material, despite its economic benefits. Experimental alloys were evaluated based on the results of crystallization process and a combination of scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and deep etching. The effect of remelting and increasing the remelted returnable material in the batch was manifested especially in the crystallization of iron-rich phases. The negative effect of remelting on the structural components was manifested after the fourth remelting. Gradual increase of remelted returnable material in the batch causes harmful changes in the crystallization process.
Go to article

Bibliography

[1] Ciu, J. & Roven, H.J. (2010). Recycling of automotive aluminum. Transactions of Nonferrous Metals Society of China. 20, 2057-2063.
[2] Gaustad, G., Olivetti, E.A. & Kirchain, R. (2012). Improving aluminum recycling: A survey of sorting and impurity removal technologies. Resources Conservation and Recycling. 58, 79-87.
[3] Kasińska, J., Bolibruchová, D. & Matejka, M. (2020). The influence of remelting on the properties of AlSi9Cu3 alloy with higher iron content. Materials. 13, 575.
[4] Das, K.S. & Green, J.A.S. (2010). Aluminum Industry and Climate Change-Assessment and Responses. JOM: The Journal of The Minerals, Metals & Materials Society. 62, 27-31.
[5] Winczek, J., Gucwa, M., Mician, M. et al. (2019). The evaluation of the wear mechanism of high-carbon hardfacing layers. Archives of Metallurgy and Materials. 64 (3), 1111-1115
[6] Medlen, D. & Bolibruchová, D. (2012). The influence of remelting on the properties of AlSi6Cu4 alloy modified by antimony. Archives of Foundry Engineering. 12(1), 81-86.
[7] Martinec, D., Pastircak, R. & Kantorikova, E. (2020). Using of Technology Semisolid Squeeze Casting by Different Initial States of Material. Archives of Foundry Engineering. 20(1), 117-121.
[8] Campbell, J. (2011). Complete Casting Handbook: Metal Casting Processes, Metallurgy, Techniques and Design. Butterworth-Heinemann, Oxford, UK.
[9] Djurdjevic, M.B., Odanovic, Z. & Talijan, N. (2011). Characterization of the Solidification Path of AlSi5Cu (1-4 wt.%) Alloys Using Cooling Curve Analysis. JOM: The Journal of The Minerals, Metals & Materials Society. 63,11, 51-57.
[10] Lukač, I. (1981). Properties and structure of non-ferrous metals. ALFA Bratislava. (in Slovak).
Go to article

Authors and Affiliations

M. Matejka
1
ORCID: ORCID
D. Bolibruchová
1
ORCID: ORCID
M. Kuriš
1

  1. University of Zilina, Faculty of Mechanical Engineering, Department of Technological Engineering, Univerzitna 1, 010 26 Zilina, Slovak Republic
Download PDF Download RIS Download Bibtex

Abstract

High strength tire cord steel is extensively used in radial ply tyres as the framework material, but the presence of brittle single titanium inclusions or complex titanium inclusions can cause failure of the wires and jeopardize their performance in production. In order to provide a key guidance on the control of titanium inclusions, it is necessary to clarify their formation mechanism during solidification. In the present work, the thermodynamic calculations were employed for an elaboration on their formation mechanism, combined with the industrial test. The TiN–MnS complex inclusions observed by SEM–EDS shows that the internal corresponds to TiN and the external is MnS. Thermodynamic calculations based on the microsegregation model indicate that MnS forms first, which can act as a nucleation site for the co–deposit of TiN in the mushy zone. As the MnS inclusions have a better deformation than that of TiN inclusions, then the TiN inclusions are wrapped by the MnS inclusions, generating TiN–MnS complex inclusions after rolling.
Go to article

Bibliography

[1] Abushosha, R., Vipond, R. & Mintz, B. (1991). Influence of titanium on hot ductility of as cast steels. Materials Science & Technology. 7(7), 613-621.
[2] Chen, Z., Li, M., Wang, X., He, S. & Wang, Q. (2019). Mechanism of floater formation in the mold during continuous casting of Ti-stabilized austenitic stainless steels. Metals. 9, 635-649.
[3] Karmakar, A., Kundu, S., Roy, S., Neogy, S., Srivastava, D. & Chakrabarti, D. (2014). Effect of microalloying elements on austenite grain growth in Nb–Ti and Nb–V steels. Materials Science and Technology. 30(6), 653-664.
[4] Reyes-Calderón, F., Mejía, I., Boulaajaj, A. & Cabrera, J.M. (2013). Effect of microalloying elements (Nb, V and Ti) on the hot flow behavior of high–Mn austenitic twinning induced plasticity (TWIP) steel. Materials Science and Engineering: A. 560, 552-560.
[5] Chen, C.Y., Jiang, Z.H., Li, Y., Zheng, L.C., Huang, X.F. & Yang, G. (2019). State of the art in the control of inclusions in tire cord steels and saw wire steels–A Review. Steel Research International. 6, 1-13.
[6] Lei, J.L., Zhao, D.N., Fu, Y.J., & Xu, X.F. (2019). Research on the characterization of Ti inclusions and their precipitation behavior in tire cord steel. Archives of Foundry Engineering. 19(3), 33-37.
[7] Cui, H.Z. & Chen, W. Q. (2012). Effect of boron on morphology of inclusions in tire cord steel. Journal of Iron and Steel Research International. 19( 4), 22-27.
[8] Wu, S., Liu, Z., Zhou, X., Yang, H. & Wang, G. (2017). Precipitation behavior of Ti in high strength steels. Journal of Central South University. 24(12), 2767-2772.
[9] Petit, J., Sarrazin-Baudoux, C. & Lorenzi, F. (2010). Fatigue crack propagation in thin wires of ultrahigh strength steels. Procedia Engineering. 2, 2317-2326.
[10] Liu, H.Y., Wang, H.L., Li, L., Zheng, J.Q., Li, Y.H. & Zeng, X.Y. (2011). Investigation of Ti inclusions in wire cord steel. Ironmaking and Steelmaking. 38(1), 53-58.
[11] Cai, X.F., Bao, Y.P., Wang, M., Lin, L., Dai, N.C. & Gu, C. (2015). 69Investigation of precipitation and growth behavior of Ti inclusions in tire cord steel. Metallurgical Research and Technology. 112(4), 407-418.
[12] Lei, J.L., Xue, Z.L., Jiang, Y.D., Zhang, J. & Zhu, T.T. (2012). Study on TiN precipitation during solidification for hypereutectoid tire cord steel. Metalurgia International. 17(9), 10-15.
[13] Chen, J.X. (2010). Common charts and databook for steelmaking. (2nd ed.). Beijing: Metallurgical Industry Press.
[14] Clyne, T.W., Wolf, M. & Kurz, W. (1982). The effect of melt composition on solidification cracking of steel with particular reference to continuous casting. Metallurgical and Materials Transactions B. 13(2), 259-266.
[15] Wada, H., & Pehlke, R.D. (1985). Nitrogen solubility and nitride formation in austenitic Fe–Ti alloys. Metallurgical and Materials Transactions B. 16(4), 815-822.
[16] Ma, Z., & Janke, D. (1998). Characteristics of oxide precipitation and growth during solidification of deoxidized steel. ISIJ International. 38(1), 46-52.
[17] Darken, L.S. (1967). Thermodynamics of binary metallic solutions. Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers. 239(1), 80-89.
[18] Yoshikawa, T., & Morita, K. (2007). Influence of alloying elements on the thermodynamic properties of titanium in molten steel. Metallurgical and Materials Transactions B. 38(4), 671-680.
[19] Kim, W., Jo, J., Chung, T., Kim, D. & Pak, J. (2007). Thermodynamics of titanium, nitrogen and TiN formation in liquid iron. ISIJ International. 47(8), 1082-1089.
[20] Ma, W.J., Bao, Y.P., Zhao, L.H., & Wang, M. (2014). Control of the precipitation of TiN inclusions in gear steels. International Journal of Minerals Metallurgy and Materials. 21(3), 234-239.
[21] Huang, X.H. (2001). Theory of Iron and Steel Metallurgy. (3rd ed.). Beijing: Metallurgical Industry Press.
[22] Won, Y.M. & Thomas, B.G. (2011). Simple model of micro–segregation during solidification of steels. Metallurgical and Materials Transactions A. 32(7), 1755-1767.
[23] Ohnaka, I. (1986). Mathematical-analysis of solute redistribution during solidification with diffusion in solid–phase. ISIJ International. 26(12), 1045-1051.
[24] Maugis, P. & Gouné, M. (2005). Kinetics of vanadium carbonitride precipitation in steel: a computer model. Acta Materialia. 53(12), 3359-3367.
[25] Manohar, P.A., Dunne, D.P., Chandra, T. & Killmore, C.R. (2007). Grain growth predictions in microalloyed steels. ISIJ International, 36(2), 194-200.
[26] Choudhary, S.K. & Ghosh, A. (2009). Mathematical model for prediction of composition of inclusions formed during solidification of liquid steel. ISIJ International. 49(12), 1819-1827.
[27] Gao, S., Wang, M., Guo, J.L., Wang, H. & Bao, Y.P. (2019). Extraction, distribution, and precipitation mechanism of TiN–MnS complex inclusions in Al-killed titanium alloyed interstitial free steel. Metals and Materials International. 12, 1-9.
Go to article

Authors and Affiliations

Jialiu Lei
1
Xiumin Wang
1
Dongnan Zhao
1
Yongjun Fu
1

  1. Hubei Polytechnic University, China
Download PDF Download RIS Download Bibtex

Abstract

The phenomenon of “soft zone” is occurring in the heat affected zone (HAZ) of high strength low alloy (HSLA) steels. Therefore, the process of weld metal solidification and phase transformation in HAZ is essential to understand the behaviour of the material, especially in the case where welded joints are debilitating part of the construction. The simulation program SYSWELD is powerful tool to predict solidification and phase transformation of welding joint, what correspond to the mechanical properties of the joints. To achieve relevant results of the simulation, it is necessary to use right mathematic-material model of the investigated material. Dilatometric test is the important methods to gather necessary input values for material database. In this paper is investigated physical and metallurgical properties of S960MC steel. The dilatometric curves were carried out on the laboratory machine dilatometer DIL 805L. In addition to determination of the phase transformation temperatures at eight levels of the cooling rate, the microstructure and hardness of the material are further analysed. The hardness of the samples reflects the achieved microstructure. Depending on the cooling rate, several austenitic transformation products were observed such as pearlite, bainite, martensite and many different ferritic microstructures. The differences between the transformation temperature results using the first derivation method and the three tangent method are up to 2%. The limit cooling rate was set at value 30°C/s. The microstructure consists only of bainite and martensite and the hardness reaches a value of 348HV and higher.
Go to article

Bibliography

[1] Jambor, M., Nový, F., Mičian, M., Trsko, L., Bokůvka, O., Pastorek, F., & Harmaniak, D. (2018). Gas metal arc wleding of thermo-mechanically controlled processed S960MC steel thin sheets with different welding parameters. Communications - Scientific Letters of the University of Žilina. 20, 29-35. DOI: 10.26552.C.2018.4.29-35.
[2] Gu, Y., Tian, P., Wang, X., Han, X., Liao, B., Xiao, E. Non-isothermal prior austenite grain growth of a high-Nb X100 pipeline steel during a simulated welding heat cycle process. Materials & Design. 89, 589-596. DOI: 10.1016/j.matdes.2015.09.039.
[3] Schneider, C., Ernst, W., Schnitzer, R., Staufer, H., Vallant, R., & Enzinger, N. (2018). Welding of S960MC with undermatching filler material. Weld World. 62, 801-809. DOI: 10.1007/s40194-018-0570-1.
[4] Porter, D., Laukkanen, A., Nevasmaa, P., Rahka, K., Wallin, K. (2004). Performance of TMCP steel with respect to mechanical properties after cold forming and post-forming heat treatement. International Journal of Pressure Vessels and Piping. 81, 867-877. DOI: 10.1016/j.ijpvp.2004.07.006.
[5] Kik, T., Górka, J., Kotarska, A. & Poloczek, T. (2020). Numerical verification of tests on the influence of the imposed thermal cycles on the structure and properties of the S700MC heat-affected zone. Metals. 10, 974. DOI: 10.3390/met10070974.
[6] Mičian, M., Harmaniak, D., Nový, F., Winczek, J., Moravec, J. & Trško, L. (2020). Effect of the t8/5 cooling time on the properties of S960MC steel in the HAZ of welded joints evaluated by thermal physical simulation. Metals. 10(2), 229. DOI: 10.3390/met10020229.
[7] Górka, J., Janicki, D., Fidali, M., & Jamrozik, W. (2017). Thermographic assessment of the HAZ properties and structure of thermomechanically treated steel. International Journal of Thermophysics. 38, 183-203. DOI: 10.1007/s10765-017-2320-9.
[8] Gomez, M., Vales, P., & Medina S.F. (2011). Evolution of microstructure and precipitation state during thermomechanical processing of a X80 microalloyed steel. Materials Science and Engineering: A. 528, 4761-4773. DOI: 10.1016/j.msea.2011.02.087.
[9] Qiang, X., Bijlaard, F.S.K., & Kolstein, H., (2013) Post-fire performance of very high strength steel S960. Journal of Constructional Steel Research. 80, 235-242. DOI: 10.1016/.jcsr.2012.09.002.
[10] Moon, A.P., Balasubramaniam, R., & Panda, B. (2010) Hydrogen embrittlement of microalloyed rail steels. Materials Science and Engineering: A. 527, 3259-3263. DOI: 10.1016/j.msea.2010.02.013.
[11] Zhao, J., Jiang, Z., Kim, J. S., and Lee, C. S. (2013). Effects of tungsten on continuous cooling transformation characteristic of microalloyed steels. Materials and Design. 49, 252-258. DOI: 10.1016/j.matdes.2013.01.056.
[12] Villalobos, J.C., Del-Pozo, A., Campillo, B., Mayen, J., Serna, S. Microalloyed steels trough history until 2018: Review of chemical composition, processing and Hydrogen service. Metals. 8, 1-49. DOI: 10.3390/met8050351.
[13] Krauss, G. (2015). Steels: processing, structure and performance. Ohio, ASM International. Available on the Internet: https://www.asminternational.org/documents/ 10192/0/05441G_TOC+%282%29.pdf/82ee161b-e171-9960-caab-74619423b6a4.
[14] Fonda, R. W., Vandermeer, R. A., & Spanos, G. (1998). Continuous Cooling Transformation (CCT) Diagrams for advanced navy welding consumables. Naval Research Laboratory, United States Navy. DOI: NRL/MR/6324—98-8185
[15] Kawulok, P., Kawulok, R., & Rusz, S. (2017). Methodology of compiling decay diagrams of the CCT and DCCT type (i.e. also with regard to the influence of previous deformation (in Czech), Retrieved October 10, 2020. Available on the Internet: https://www.fmt.vsb.cz/export/sites/fmt/633/cs/studium/navody-k-cviceni/deformacni-chovani-materialu/cviceni-12/Doc/cv12.pdf.
[16] Moravec, J., Novakova, I., Sobotka, J. et al. (2019). Determination of grain growth kinetics and assessment of welding effect on properties of S700MC steel in the HAZ of welded joints. Metals. 9(6). DOI: 10.3390/met9060707.
[17] Palček, P., Hadzima, B., Chalupová, M. (2004). Experimental methods in engineering materials (in Slovak) Žilina, EDIS ŽU Žilina, ISBN 80-8070-179-2.
[18] Pawlowski, B., Bala, P. & Dziurka, P. (2014). Improper interpretation of dilatometric data for cooling transformation in steels. Archives of Metallurgy and Materials. 59(3), 1159-1161. DOI: 10.2478/amm-2014-0202.
[19] Herath, D., Mendez, P.F., Kamyabi-Gol, A. (2017). A comparison of common and new methods to determine martensite start temperature using a dilatometer. Canadian Metallurgical Quarterly. 56, 85-93. DOI: 10.1080/00084433.2016.1267903.
[20] Vondráček, J. (2013) Influence of heating and cooling rate on transformational changes of material (in Czech), Bachelor thesis, Technical University of Liberec, Czech Republic. Available on the Internet: https://dspace.tul.cz/bitstream/handle/15240/153925/Bakalarska_prace_Vliv_rychlosti_ohrevu_a_ochlazovani_na_transformacni_zmeny_materialu_Jiri_Vondracek.pdf?sequence=1.
[21] Bräutigam–Matus, K., Altamirano, G., Salinas, A., Flores, A. & Goodwin, F. (2018). Experimental Determination of Continuous Cooling Transformation (CCT) Diagrams for Dual-Phase Steels from the Intercritical Temperature Range. Metals. 8, 674. https://doi.org/10.3390/met8090674.
[22] Yang, X., Yu, W., Tang, D., Shi, J., Li, Y., Fan, J., Mei, D., & Du, Q. (2020). Effect of cooling rate and austenite deformation on hardness and microstructure of 960MPa high strength steel. Science and Engineering of Composite Materials. 27(1), 415-423. DOI: https://doi.org/10.1515/secm-2020-0045.
[23] Pawłowski, B., Bała, P. & Dziurka, R. (2014). Improper interpretation of dilatometric data for cooling transformation in steels. Archives of Metallurgy and Materials. 59(3). DOI: 10.2478/amm-2014-0202.
[24] Motyčka, P., Kovér, M. (2012). Evaluation methods of dilatometer curves of phase transformations. In COMAT 2012, 2nd International Conference on Recent Trends in Structural Materials, 21-22 November 2012, Plzeň, Czech Republic, Recent trends in structural materials. Available on the Internet: http://comat2012.tanger.cz/files/proceedings/11/reports/1237.pdf.
[25] Ghafouri, M., Ahn, J., Mourujärvi, J., Björk, T., Larkiola, J. (2020) Finite element simulation of welding distortions in ultra-high strength steel S960 MC including comprehensive thermal and solid-state phase transformation models, Engineering Structures. 219, DOI: 10.1016/j.engstruct.2020.110804.
[26] Bayock, F.N., Kah, P., Mvola, B., Layus, P. (2019). Effect of heat input and undermatched filler wire on the microstructure and mechanical properties of dissimilar S700MC/S960QC high-strength steels. Metals. (9). DOI: 10.3390/met9080883
Go to article

Authors and Affiliations

M. Málek
1
M. Mičian
1
ORCID: ORCID
J. Moravec
1

  1. Faculty of Mechanical Engineering, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec I, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

The research analyzed seasonal changes of the oxygen regime and related indicators on the example of water objects of the Ukrainian Polesie Region. The region shows different directions of economic use. Zebrafish ( Danio rerio Hamilton–Buchanan) and the Prussian carp ( Carassius auratus gibelio Bloch) were used as test objects to investigate survival responses. Dissolved oxygen (DO) concentration in water, pH values and temperatures were determined by standard methods. Based on research results, the main problems were determined pertaining to the oxygen regime of investigated waters, i.e. the increase in temperature and toxicity of the aquatic environment in the summer. A rather dangerous decrease in DO concentration, almost up to the levels of maximum allowable concentration (MAC) (4.10 mg∙dm–3 in group E1 and 6.07 mg∙dm–3 in group E2), was observed in August and it was typical for the reservoirs with a slow water movement. Flowing river waters (group E3) were eliminated due to their better aeration compared to other groups. The correlation analysis based on the presented data revealed a high and average degree of probable correlation between the DO concentration and water temperature, as well as an average degree of correlation with general toxicity determined on sensitive species of D. rerio, and in group E1 on the persistent species C. auratus gibelio as well. The interrelations and equations of the rectilinear regression can be used to predict the oxygen regime of the waters investigated and other surface waters having similar problems.
Go to article

Authors and Affiliations

Ella O. Aristarkhova
1
ORCID: ORCID
Tetiana P. Fedoniuk
2
ORCID: ORCID
Ludmila D. Romanchuk
1
ORCID: ORCID
Sergii V. Latushynskyi
1
ORCID: ORCID
Iryna V. Kot
1
ORCID: ORCID

  1. Polissia National University, Faculty of Forestry and Ecology, Zhytomyr, Ukraine
  2. Polissia National University, Educational and Scientific Center of Ecology and Environmental Protection, Staryi Blvd, 7, Zhytomyr, Zhytomyrs'ka oblast, 10008 Ukraine

This page uses 'cookies'. Learn more