Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The goal of the work was to investigate the influence of silver addition on the microstructure of CuNi2Si1 alloys. The investigated copper alloy was cast and then supersaturated, plastically deformed on the Gleeble 3800 simulator and finally aged. Structural changes were examined using optical microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Orientation mapping was completed FEI Quanta 3D field emission gun scanning electron microscope (SEM) equipped with TSL electron backscattered diffraction (EBSD) system. The effect of structural and microstructural changes on hardness and conductivity was also investigated. Based on the mechanical tests it was found, that the mechanical properties and conductivity are improved due to heat and plastic treatment. It was also found that the precipitation hardening raises the hardness to the level of 40% whilst an increase in conductivity by 20% is observed.
Go to article

Authors and Affiliations

Beata Krupińska
1
ORCID: ORCID
Robert Chulist
2
Marcin Kondracki
3
ORCID: ORCID
Krzysztof Labisz
4

  1. Silesian University of Technology, Faculty of Mechanical Engineering, Department of Engineering Materials and Biomaterials, 44-100 Gliwice, Konarskiego St. 18a, Poland
  2. Institute of Metallurgy and Materials Science of Polish Academy of Sciences, 30-059 Krakow, Reymonta St. 25, Poland
  3. Silesian University of Technology, Faculty of Mechanical Engineering, Department of Foundry Engineering, 44-100 Gliwice, Konarskiego St. 18a, Poland
  4. Silesian University of Technology, Faculty of Transport and Aviation Engineering, Department of Railway Transport, 44-100 Gliwice, Konarskiego St. 18a, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of microstructural and mechanical investigation of long-term aged TP347HFG austenitic stainless steel. Ageing was performed at a time of up to 30 000 hours and the temperature of 600 and 650◦C. Ageing was proved to lead to the precipitation of secondary phase particles not only inside grains but also on the boundaries of grains and twins. The MX precipitates were observed inside the grains. However, M23C6 carbides and sigma phase precipitates were observed on grain boundaries. The changes in the microstructure of the examined steel translated into the mechanical properties, i.e. initially observed growth and then the decrease of yield strength and a gradual decrease in impact energy. The overageing process – a decrease in strength properties – was associated with the growth of the size of M23C6 carbides and the precipitation of the sigma phase. The reduction of impact energy in TP347HFG austenitic stainless steel was found to be associated with the precipitation of M23C6 carbides in the case of the 600◦C temperature, and the M23C6 carbides and sigma phase in the case of the 650◦C temperature. The rate of changes in the microstructure and mechanical properties depended on the ageing temperature.
Go to article

Authors and Affiliations

Grzegorz Golański
1
ORCID: ORCID
Hanna Purzyńska
2

  1. Czestochowa University of Technology, Department of Materials Science, Armii Krajowej 19, 42-200 Częstochowa, Poland
  2. Łukasiewicz Research Network – Institute for Ferrous Metallurgy, K. Miarki 12-14, 44-100 Gliwice, Poland

This page uses 'cookies'. Learn more