Search results

Filters

  • Journals

Search results

Number of results: 558
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Inverse boundary problem for cylindrical geometry and unsteady heat conduction equation was solved in this paper. This solution was presented in a convolution form. Integration of the convolution was made assuming the distribution of temperature T on the integration interval (ti, ti+ Δt) in the form T (x, t) = T (x, ti) Θ + T (z, ti+ Δt) (1 - Θ), where Θ ϵ (0,1). The influence of value of the parameter Θ on the sensitivity of the solution to the inverse problem was analysed. The sensitivity of the solution was examined using the SVD decomposition of the matrix A of the inverse problem and by analysing its singular values. An influence of the thermocouple installation error and stochastic error of temperature measurement as well as the parameter Θ on the error of temperature distribution on the edge of the cylinder was examined.
Go to article

Authors and Affiliations

M. Joachimiak
M. Ciałkowski
Download PDF Download RIS Download Bibtex

Abstract

The conversion of a waste heat energy to electricity is now becoming one of the key points to improve the energy efficiency in a process engineering. However, large losses of a low-temperature thermal energy are also present in power engineering. One of such sources of waste heat in power plants are exhaust gases at the outlet of boilers. Through usage of a waste heat regeneration system it is possible to attain a heat rate of approximately 200 MWth, under about 90°C, for a supercritical power block of 900 MWelfuelled by a lignite. In the article, we propose to use the waste heat to improve thermal efficiency of the Szewalski binary vapour cycle. The Szewalski binary vapour cycle provides steam as the working fluid in a high temperature part of the cycle, while another fluid – organic working fluid – as the working substance substituting conventional steam over the temperature range represented by the low pressure steam expansion. In order to define in detail the efficiency of energy conversion at various stages of the proposed cycle the exergy analysis was performed. The steam cycle for reference conditions, the Szewalski binary vapour cycle as well as the Szewalski hierarchic vapour cycle cooperating with a system of waste heat recovery have been comprised.
Go to article

Authors and Affiliations

Paweł Ziółkowski
Janusz Badur
Tomasz Kowalczyk
Download PDF Download RIS Download Bibtex

Abstract

Adsorption refrigeration systems are able to work with heat sources of temperature starting with 50°C. The aim of the article is to determine whether in terms of technical and economic issues adsorption refrigeration equipment can work as elements that produce cold using hot water from the district heating network. For this purpose, examined was the work of the adsorption air conditioning equipment cooperating with drycooler, and the opportunities offered by the district heating network in Warsaw during the summer. It turns out that the efficiency of the adsorption device from the economic perspective is not sufficient for production of cold even during the transitional period. The main problem is not the low temperature of the water supply, but the large difference between the coefficients of performance, COPs, of adsorption device and a traditional compressor air conditioning unit. When outside air temperature is 25°C, the COP of the compressor type reaches a value of 4.49, whereas that of the adsorption device in the same conditions is 0.14. The ratio of the COPs is 32. At the same time ratio between the price of 1 kWh of electric power and 1 kWh of heat is only 2.85. Adsorption refrigeration equipment to be able to compete with compressor devices, should feature COPads efficiency to be greater than 1.52. At such a low driving temperature and even changing the drycooler into the evaporative cooler it is not currently possible to achieve.
Go to article

Authors and Affiliations

Artur Rusowicz
Andrzej Grzebielec
Maciej Jaworski
Rafał Laskowski
Download PDF Download RIS Download Bibtex

Abstract

This paper focuses on assessment of the effect of flue gas recirculation (FGR) on heat transfer behavior in 1296t/h supercritical coal-fired circulating fluidized bed (CFB) combustor. The performance test in supercritical CFB combustor with capacity 966 MWthwas performed with the low level of flue gas recirculation rate 6.9% into furnace chamber, for 80% unit load at the bed pressure of 7.7 kPa and the ratio of secondary air to the primary air SA/PA = 0.33. Heat transfer behavior in a supercritical CFB furnace between the active heat transfer surfaces (membrane wall and superheater) and bed material has been analyzed for Geldart B particle with Sauter mean diameters of 0.219 and 0.246 mm. Bed material used in the heat transfer experiments had particle density of 2700 kg/m3. A mechanistic heat transfer model based on cluster renewal approach was used in this work. A heat transfer analysis of CFB combustion system with detailed consideration of bed-to-wall heat transfer coefficient distributions along furnace height is investigated. Heat transfer data for FGR test were compared with the data obtained for representative conditions without recycled flue gases back to the furnace through star-up burners.
Go to article

Authors and Affiliations

Artur Błaszczuk
Download PDF Download RIS Download Bibtex

Abstract

Given its high efficiency, low emissions and multiple fuelling options, the solid oxide fuel cells (SOFC) offer a promising alternative for stationary power generators, especially while engaged in micro-combined heat and power (μ-CHP) units. Despite the fact that the fuel cells are a key component in such power systems, other auxiliaries of the system can play a critical role and therefore require a significant attention. Since SOFC uses a ceramic material as an electrolyte, the high operating temperature (typically of the order of 700–900°C) is required to achieve sufficient performance. For that reason both the fuel and the oxidant have to be preheated before entering the SOFC stack. Hot gases exiting the fuel cell stack transport substantial amount of energy which has to be partly recovered for preheating streams entering the stack and for heating purposes. Effective thermal integration of the μ-CHP can be achieved only when proper technical measures are used. The ability of efficiently preheating the streams of oxidant and fuel relies on heat exchangers which are present in all possible configurations of power system with solid oxide fuel cells. In this work a compact, fin plate heat exchanger operating in the high temperature regime was under consideration. Dynamic model was proposed for investigation of its performance under the transitional states of the fuel cell system. Heat exchanger was simulated using commercial modeling software. The model includes key geometrical and functional parameters. The working conditions of the power unit with SOFC vary due to the several factors, such as load changes, heating and cooling procedures of the stack and others. These issues affect parameters of the incoming streams to the heat exchanger. The mathematical model of the heat exchanger is based on a set of equations which are simultaneously solved in the iterative process. It enables to define conditions in the outlets of both the hot and the cold sides. Additionally, model can be used for simulating the stand-alone heat exchanger or for investigations of a semiadiabatic unit located in the hotbox of the μ-CHP unit.
Go to article

Authors and Affiliations

Konrad Motyliński
Jakub Kupecki
Download PDF Download RIS Download Bibtex

Abstract

The internal diameter of a tube in a ‘church window’ condenser was estimated using an entropy generation minimization approach. The adopted model took into account the entropy generation due to heat transfer and flow resistance from the cooling-water side. Calculations were performed considering two equations for the flow resistance coefficient for four different roughness values of a condenser tube. Following the analysis, the internal diameter of the tube was obtained in the range of 17.5 mm to 20 mm (the current internal diameter of the condenser tube is 22 mm). The calculated diameter depends on and is positively related to the roughness assumed in the model.
Go to article

Authors and Affiliations

Artur Rusowicz
Rafał Laskowski
Andrzej Grzebielec
Download PDF Download RIS Download Bibtex

Abstract

Distribution of the exhaust gas temperature within the furnace of a grate boiler greatly depends on its operating parameters such as output. It has a considerably different character than temperature distributions in other types of boilers (with pulverised or fluidised bed), as it varies considerably across the chamber. Results presented in this paper have been obtained through research of a grate-fired hot water boiler with a nominal rating of some 30 MW. Measurements have been taken by introducing temperature sensors into prearranged openings placed in the boiler side walls. Investigation has been carried out for different output levels. Tests involved thermocouples in ceramic coating and aspirated thermocouples. The latter were used to eliminate influence of radiative heat transfer on measured results. Values obtained with both methods have been cross-checked.
Go to article

Authors and Affiliations

Piotr Krawczyk
Krzysztof Badyda
Jacek Szczygieł
Szczepan Młynarz
Download PDF Download RIS Download Bibtex

Abstract

The paper presents analytical and numerical model calculation results of the temperature distribution along the thermal flow meter. Results show a very good conformity between numerical and analytical model. Apart from the calculation results the experimental investigations are presented. The author performed the test where a temperature of duct wall surface was measured. Therelation between mass flow rate in terms of the duct surface temperature difference was developed.
Go to article

Authors and Affiliations

Artur Cebula
Download PDF Download RIS Download Bibtex

Abstract

The experiment leads to establish the influence of radiated surface development heat exchangers on the values of heat flux transferred with water flowing through the exchangers and placed in electric furnace chamber. The values of emissivity coefficients are given for the investigated metal and ceramic coatings. Analytical calculations have been made for the effect of the heating medium (flame) – uncoated wall and then heating medium (flame) – coated wall reciprocal emissivity coefficients. Analysis of the values of exchanged heat flux were also realized. Based on the measurement results for the base coating properties, these most suitable for spraying the walls of furnaces and heat exchangers were selected, and determined by the intensification of heat exchange effect. These coatings were used to spray the walls of a laboratory waste-heat boiler, and then measurements of fluxes of heat absorbed by the cooling water flowing through the boiler tubes covered with different type coatings were made. Laboratory tests and calculations were also confirmed by the results of full-scale operation on the metallurgical equipment.
Go to article

Authors and Affiliations

Sławomir Morel
Download PDF Download RIS Download Bibtex

Abstract

Development of electronics, which aims to improve the functionality of electronic devices, aims at increasing the packing of transistors in a chip and boosting clock speed (the number of elementary operations per second). While pursuing this objective, one encounters the growing problem of thermal nature. Each switching of the logic state at the elementary level of an integrated circuit is associated with the generation of heat. Due to a large number of transistors and high clock speeds, higher heat flux is emitted by the microprocessor to a level where the component needs to be intensively cooled, or otherwise it will become overheated. This paper presents the cooling of microelectronic components using microjets.
Go to article

Authors and Affiliations

Artur Rusowicz
Maciej Leszczyński
Andrzej Grzebielec
Rafał Laskowski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents dynamic model of hot water storage tank. The literature review has been made. Analysis of effects of nodalization on the prediction error of generalized finite element method (GFEM) is provided. The model takes into account eleven various parameters, such as: flue gases volumetric flow rate to the spiral, inlet water temperature, outlet water flow rate, etc. Boiler is also described by sizing parameters, nozzle parameters and heat loss including ambient temperature. The model has been validated on existing data. Adequate laboratory experiments were provided. The comparison between 1-, 5-, 10- and 50-zone boiler is presented. Comparison between experiment and simulations for different zone numbers of the boiler model is presented on the plots. The reason of differences between experiment and simulation is explained.
Go to article

Authors and Affiliations

Marcin Wołowicz
Jakub Kupecki
Katarzyna Wawryniuk
Jarosław Milewski
Konrad Motyliński
Download PDF Download RIS Download Bibtex

Abstract

Free convection is one of the heat transfer modes which occurs within the heat-treated bundles of steel rectangular section. A comprehensive study of this phenomenon is necessary for optimizing the heating process of this type of charge. The free convection intensity is represented by the Rayleigh number Ra. The value of this criterion depends on the following parameters: the mean section temperature, temperature difference within the section, kinematic coefficient of viscosity, volume expansion coefficient and the Prandtl number. The paper presents the analysis of the impact of these factors on free convection in steel rectangular sections. The starting point for this analysis were the results of experimental examinations. It was found that the highest intensity of this process occurs for the temperature of 100°C. This is mainly caused by changes in the temperature difference observed in the area of sections and changes in kinematic coefficient of viscosity of air. The increase in the value of the Rayleigh number criterion at the initial stage is attributable to changes in the parameter of temperature difference within the section. After exceeding 100°C, the main effect on convection is from changes in air viscosity. Thus, with further increase in temperature, the Rayleigh number starts to decline rapidly despite further rise in the difference in temperature.
Go to article

Authors and Affiliations

Rafał Wyczółkowski
Download PDF Download RIS Download Bibtex

Abstract

CFD (Computational Fluid Dynamics) computations are carried out in order to investigate the flow distribution and its influence on the heat transfer processes in the high-performance heat exchanger. The subject of this investigation is the classical model of the high-performance heat exchanger with elliptical tubes and rectangular fins. It is possible to find the flow domains where the heat transfer conditions are impaired due to the fully developed turbulent flow. Therefore, the considerable thermal loads occur that may cause the breakdown of the heat exchanger. The emphasis of this investigation is put on the zones and the locations where the tubes are not properly fed with liquid, that result in occurrence of cavitation.

Go to article

Authors and Affiliations

Stanisław Łopata
Paweł Ocłoń
Download PDF Download RIS Download Bibtex

Abstract

In this paper a mathematical model enabling the analysis of the heat-flow phenomena occurring in the waterwalls of the combustion chambers of the boilers for supercritical parameters is proposed. It is a one-dimensional model with distributed parameters based on the solution of equations describing the conservation laws of mass, momentum, and energy. The purpose of the numerical calculations is to determine the distributions of the fluid enthalpy and the temperature of the waterwall pipes. This temperature should not exceed the calculation temperature for particular category of steel. The derived differential equations are solved using two methods: with the use of the implicit difference scheme, in which the mesh with regular nodes was applied, and using the Runge-Kutta method. The temperature distribution of the waterwall pipes is determined using the CFD. All thermophysical properties of the fluid and waterwall pipes are computed in real-time. The time-spatial heat transfer coefficient distribution is also computed in the on-line mode. The heat calculations for the combustion chamber are carried out with the use of the zone method, thus the thermal load distribution of the waterwalls is known. The time needed for the computations is of great importance when taking into consideration calculations carried out in the on-line mode. A correctly solved one-dimensional model ensures the appropriately short computational time.

Go to article

Authors and Affiliations

Wiesław Zima
Sławomir Grądziel
Artur Cebula
Download PDF Download RIS Download Bibtex

Abstract

In this paper, flow systems which are commonly used in fittings elements such as contractions in ice slurry pipelines, are experimentally investigated. In the study reported in this paper, the consideration was given to the specific features of the ice slurry flow in which the flow behaviour depends mainly on the volume fraction of solid particles. The results of the experimental studies on the flow resistance, presented herein, enabled to determine the loss coefficient during the ice slurry flow through the sudden pipe contraction. The mass fraction of solid particles in the slurry ranged from 5 to 30%. The experimental studies were conducted on a few variants of the most common contractions of copper pipes: 28/22 mm, 28/18 mm, 28/15 mm, 22/18 mm, 22/15 mm and 18/15 mm. The recommended (with respect to minimal flow resistance) range of the Reynolds number (Re about 3000-4000) for the ice slurry flow through sudden contractions was presented in this paper.

Go to article

Authors and Affiliations

Łukasz Mika
Download PDF Download RIS Download Bibtex

Abstract

The optimization of finned tube heat exchanger is presented focusing on different fluid velocities and the consideration of aerodynamic configuration of the fin. It is reasonable to expect an influence of fin profile on the fluid streamline direction. In the cross-flow heat exchanger, the air streams are not heated and cooled evenly. The fin and tube geometry affects the flow direction and influences temperature changes. The heat transfer conditions are modified by changing the distribution of fluid mass flow. The fin profile impact also depends on the air velocity value. Three-dimensional models are developed to find heat transfer characteristics between a finned tube and the air for different air velocities and fin shapes. Mass flow weighted average temperatures of air volume flow rate are calculated in the outlet section and compared for different fin/tube shapes in order to optimize heat transfer between the fin material and air during the air flow in the cross flow heat exchanger.

Go to article

Authors and Affiliations

Piotr Wais
Download PDF Download RIS Download Bibtex

Abstract

Construction elements of supercritical power plants are subjected to high working pressures and high temperatures while operating. Under these conditions high stresses in the construction are created. In order to operate safely, it is important to monitor stresses, especially during start-up and shut-down processes. The maximum stresses in the construction elements should not exceed the allowable stress limit. The goal is to find optimum operating parameters that can assure safe heating and cooling processes [1-5]. The optimum parameters should guarantee that the allowable stresses are not exceeded and the entire process is conducted in the shortest time. In this work new numerical method for determining optimum working parameters is presented. Based on these parameters heating operations were conducted. Stresses were monitored during the entire processes. The results obtained were compared with the German boiler regulations - Technische Regeln für Dampfkessel 301.

Go to article

Authors and Affiliations

Piotr Duda
Dariusz Rząsa
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the solution to a problem of determining the heat flux density and the heat transfer coefficient, on the basis of temperature measurement at three locations in the flat sensor, with the assumption that the heat conductivity of the sensor material is temperature dependent. Three different methods for determining the heat flux and heat transfer coefficient, with their practical applications, are presented. The uncertainties in the determined values are also estimated.

Go to article

Authors and Affiliations

Dawid Taler
Sławomir Grądziel
Jan Taler
Download PDF Download RIS Download Bibtex

Abstract

The authors presented problems related to utilization of exhaust gases of the gas turbine unit for production of electricity in an Organic Rankine Cycle (ORC) power plant. The study shows that the thermal coupling of ORC cycle with a gas turbine unit improves the efficiency of the system. The undertaken analysis concerned four the so called "dry" organic fluids: benzene, cyclohexane, decane and toluene. The paper also presents the way how to improve thermal efficiency of Clausius-Rankine cycle in ORC power plant. This method depends on applying heat regeneration in ORC cycle, which involves pre-heating the organic fluid via vapour leaving the ORC turbine. As calculations showed this solution allows to considerably raise the thermal efficiency of Clausius-Rankine cycle.

Go to article

Authors and Affiliations

Sławomir Wiśniewski
Aleksandra Borsukiewicz-Gozdur
Download PDF Download RIS Download Bibtex

Abstract

Research oriented on identification of operating states variations with the application of mathematical models of thermal processes has been developed in the field of energy processes diagnostics. Simple models, characterised by short calculation time, are necessary for thermal diagnostics needs. Such models can be obtained using empirical modelling methods. Good results brings the construction of analytical model with auxiliary empirical built-in functions. The paper presents a mathematical model of a steam-water cycle containing mass and energy balances and semiempirical models of steam expansion line in turbine as well as heat transfer in exchangers. A model of steam expansion line in a turbine is worked out with the application of a steam flow capacity equation and an internal efficiency of process equation for each group of stages for the analysed turbine. A model of a heat exchanger contains energy balance and the relation describing heat transfer in an exchanger, proposed by Beckman. Estimation of empirical equations coefficients was realised with the application of special and reliable measurements. Estimation criterion was a weighted relative sum of the remainder squares. There are exemplary calculations results presented in the final part of paper.

Go to article

Authors and Affiliations

Grzegorz Szapajko
Henryk Rusinowski
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the Life Cycle Assessment (LCA) analysis concerning the selected options of supercritical coal power units. The investigation covers a pulverized power unit without a CCS (Carbon Capture and Storage) installation, a pulverized unit with a "post-combustion" installation (MEA type) and a pulverized power unit working in the "oxy-combustion" mode. For each variant the net electric power amounts to 600 MW. The energy component of the LCA analysis has been determined. It describes the depletion of non-renewable natural resources. The energy component is determined by the coefficient of cumulative energy consumption in the life cycle. For the calculation of the ecological component of the LCA analysis the cumulative CO2 emission has been applied. At present it is the basic emission factor for the LCA analysis of power plants. The work also presents the sensitivity analysis of calculated energy and ecological factors.

Go to article

Authors and Affiliations

Andrzej Ziębik
Krzysztof Hoinka
Marcin Liszka
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a method for assessing the degree of approaching the paper output of the Clausius-Rankine cycle to the Carnot cycle. The computations to illustrate its use were performed for parameters characteristic of the current state of development of condensing power plants as well as in accordance with predicted trends for their further enhancing. Moreover there are presented computations of energy dissipation in the machines and devices working in such a cycle.

Go to article

Authors and Affiliations

Henryk Łukowicz
Tadeusz Chmielniak
Download PDF Download RIS Download Bibtex

Abstract

Integrated gasification combined cycle systems (IGCC) are becoming more popular because of the characteristics, by which they are characterized, including low pollutants emissions, relatively high efficiency of electricity production and the ability to integrate the installation of carbon capture and storage (CCS). Currently, the most frequently used CO2 capture technology in IGCC systems is based on the absorption process. This method causes a significant increase of the internal load and decreases the efficiency of the entire system. It is therefore necessary to look for new methods of carbon dioxide capture. The authors of the present paper propose the use of membrane separation. The paper reviews available membranes for use in IGCC systems, indicates, inter alia, possible places of their implementation in the system and the required operation parameters. Attention is drawn to the most important parameters of membranes (among other selectivity and permeability) influencing the cost and performance of the whole installation. Numerical model of a membrane was used, among others, to analyze the influence of the basic parameters of the selected membranes on the purity and recovery ratio of the obtained permeate, as well as to determine the energetic cost of the use of membranes for the CO2 separation in IGCC systems. The calculations were made within the environment of the commercial package Aspen Plus. For the calculations both, membranes selective for carbon dioxide and membranes selective for hydrogen were used. Properly selected pressure before and after membrane module allowed for minimization of energy input on CCS installation assuring high purity and recovery ratio of separated gas.

Go to article

Authors and Affiliations

Janusz Kotowicz
Anna Skorek-Osikowska
Katarzyna Janusz-Szymańska
Download PDF Download RIS Download Bibtex

Abstract

The problem presented in this paper refers to the concepts applied to the design of supercritical steam turbines. The issue under the investigation is the presence of a cooling system. Cooling systems aim to protect the main components of the turbines against overheating. However the cooling flows mix with the main flow and modify the expansion line in the steam path. This affects the expansion process in the turbine and changes the performance when compared to the uncooled turbine. The analysis described here investigates the range of the influence of the cooling system on the turbine cycle. This influence is measured mainly through the change of the power generation efficiency. The paper explains the approach towards the assessment of the cooling effects and presents results of the modeling for three supercritical steam cycles.

Go to article

Authors and Affiliations

Wojciech Kosman

This page uses 'cookies'. Learn more