Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Plants adapt to extremely low temperatures in polar regions by maximizing their photosynthetic efficiency and accumulating cryoprotective and osmoprotective compounds. Flowering plants of the family Poaceae growing in the Arctic and in the Antarctic were investigated. Their responses to cold stress were analyzed under laboratory conditions. Samples were collected after 24 h and 48 h of cold treatment. Quantitative and qualitative changes of sugars are found among different species, but they can differ within a genus of the family Poaceae. The values of the investigated parameters in Poa annua differed considerably depending to the biogeographic origin of plants. At the beginning of the experiment, Antarctic plants were acclimatized in greenhouse characterized by significantly higher content of sugars, including storage reserves, sucrose and starch, but lower total protein content. After 24 h of exposure to cold stress, much smaller changes in the examined parameters were noted in Antarctic plants than in locally grown specimens. Total sugar content and sucrose, starch and glucose levels were nearly constant in P. annua, but they varied significantly. Those changes are responsible for the high adaptability of P. annua to survive and develop in highly unsupportive environments and colonize new regions.
Go to article

Authors and Affiliations

Irena Giełwanowska
Elżbieta Łopieńska-Biernat
Marta Pastorczyk
Krystyna Żółtowska
Robert Stryiński
Ewa Zaobidna
Download PDF Download RIS Download Bibtex

Abstract

Polygonum orientale with beautiful red flowers can be found as one dominant species in the vicinity of most water bodies and wetlands in China. However, its phytoremediation potential has not been sufficiently explored because little is known about its resistance to inorganic or organic pollutants. We investigated P. orientale response to low and moderate levels of phenol stress (≤ 80 mg L-1). Endpoints included phenol tolerance of P. orientale and the removal of the pollutant, antioxidant enzyme activities, damage to the cell membrane, osmotic regulators and photosynthetic pigments. In plant leaves, phenol stress significantly increased the activities of peroxidase (POD) and catalase (CAT), as well as the contents of proline, soluble sugars and carotenoids, whereas superoxide dismutase (SOD), H2O2 and electrolyte leakage (EL) levels remained unaltered. On the other hand, there were significant decreases of soluble protein and chlorophyll contents. We demonstrated that, in combination with phenol tolerance and its removal, P. orientale has efficient protection mechanisms against phenol-induced oxidative damage (≤ 80 mg L-1). We propose that P. orientale could be used as an alternative and interesting material in the phytoremediation of phenol.

Go to article

Authors and Affiliations

Kai Wang
Jin Cai
Shulian Xie
Jia Feng
Ting Wang

This page uses 'cookies'. Learn more