Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 14
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Coal is a cheap and accessible source of energy. However, the environmental costs associated with its exploitation and combustion are increasing. Burning coal generates large amounts of carbon dioxide. A gas that is a major contributor to global climate change.
Coal is a raw material used in various technologies (from energy to medicine) and is also the subject of scientific research. The directions for its use change over time. By tracing research trends related to coal, new research directions can be identified. Bibliometric analysis is used for this purpose, using a variety of data pertaining to scientific publications observed with the development of science. This method makes it possible to analyse networks of research, national and international, and to identify the internal logic of scientific development. This article aims to analyse research topics related to the word “coal” in the period covering 1950–2023. The article presents an analysis of publications indexed in the SCOPUS database. Publications that contained phrases related to search phrases containing the word “COAL” in the title, abstract, or keywords were included in the analysis. The dynamics of changes in the interest of coal researchers in subject areas, research areas, and countries were presented. On this basis, an attempt was made to identify future leading research topics related to coal and to identify limitations and barriers to the development of this research topic.

Go to article

Authors and Affiliations

Jacek Misiak
1
ORCID: ORCID
Barbara Uliasz-Misiak
2
ORCID: ORCID

  1. AGH University of Kraków, Faculty of Geology, Geophysics and Environment Protection, Poland
  2. AGH University of Science and Technology, Faculty of Drilling, Oil and Gas, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The narrow bandgaps of silver nanostructure and its derivatives make them photocatalytic-efficient. This bibliometric examines silver nanoparticle research in photocatalysis to identify its growth, research gap, and trends. The 1,941 Web of Science Core Collection publications from 2018 to 2023 were used as research data. The search used Publish or Perish, and the investigation was established on topic area with titles, abstracts, keywords, and terms co-occurrence in the study of silver-based photocatalyst. The visualisation was done with VOSviewer. The number of papers on silver nanoparticles and their derivatives as photocatalysts fluctuated, peaking in 2019. The publications focused on visible-light-irradiated photocatalysts. These findings also revealed a research gap that can be filled by studying silver derivatives including silver chloride, silver oxide, silver sulfide, and silver iodide. This bibliometric study should help researchers examine silver nanoparticles in photocatalysis.
Go to article

Authors and Affiliations

R.M. Zahrah
1
ORCID: ORCID
M. Norsuria
1 2
ORCID: ORCID
M.N. Natashah
2
ORCID: ORCID
I.S.M. Binti
2
ORCID: ORCID
Y. Nurfina
3

  1. Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering & Technology, 02600 Jejawi, Perlis, Malaysia
  2. Universiti Malaysia Perlis (UniMAP), Centre of Excellence Geopolymer and Green Technology (CEG eoGT ech), 02600 Jejawi, Perlis, Malaysia
  3. Research Center for Photonics, National Research and Innovation Agency, Kawasan Puspiptek Gd. 442 Tangerang Selatan, Indonesia, 15314
Download PDF Download RIS Download Bibtex

Abstract

The academic community was and still is a community of scholars taking various positions. Problematic was and still is the changing of ways we set these positions in both, in relation to a long lasting academic tradition and in a much shorter period of academic activity of particular scholars. Some of these ways did show in a greater extent its own usability and some in lesser. In these remarks I make the attempt to point out those who did work out well and in some way still do and which ones should be history by now. However it is not all. Relatively recently ways of positioning of scholars occurred that are in some perspectives innovative and widely applied (also in Poland). Nevertheless they do have in the academic millieu its followers and radical opponents. The bibliometric positioning of scholars is one of those ways.
Go to article

Bibliography

Abelard P. (1952), Historia moich niedoli, Warszawa: PIW.
Brzeziński J. (2021), Czy (i komu) potrzebne są czasopisma naukowe?, Ruch Prawniczy, Ekonomiczny i Socjologiczny, nr 2/2021, s. 9–25.
Brzeziński J. (2015), Jeżeli oceniać (jednostki naukowe i badawcze), to JAK oceniać? Przeciwko IF, a za peer review, Nowotwory Journal of Oncology, t. 65, nr 6, s. 476–480.
Crombie A.C. (1960), Nauka średniowieczna i początki nauki nowożytnej, t. II, Warszawa: Instytut Wydawniczy PAX.
Drozdowicz Z. (2017), Stopnie naukowe za wdrożenia, Forum Akademickie 3/2017, s. 30–32.
Einstein A., Infeld L. (1959), Ewolucja fizyki. Rozwój poglądów od najdawniejszych pojęć do teorii względności i kwantów, Warszawa: PWN.
Heller M. (2014), Nowa fizyka i nowa teologia, Kraków: Copernikus Center Press.
Highfield R., Carter P. (1995), Prywatne życie Alberta Einsteina, Warszawa: Prószyński i S-ka.
Hübner P. (2021), Ludzie systemu, Forum Akademickie nr 11.
Le Goff J. (1997), Inteligencja w wiekach średnich, Warszawa: Oficyna Wydawnicza Volumen, Dom Wydawniczy Bellona.
Kierul J. (1996), Izaak Newton. Bóg, światło i świat, Wrocław: Oficyna Wydawnicza Quadrivium.
Kołłątaj H. (1953), Raport z wizytacji Akademii Krakowskiej odbytej w r. 1777, [w:] Wybór pism naukowych, Warszawa: PWN.
Kramer B. (2015). Akademische Ramschwa, Der Spiegel. Archived from the original on 24 June 2018. Retrieved 1 October 2021.
Kulczycki E. (2017), Punktoza jako strategia w grze parametrycznej w Polsce, Nauka i Szkolnictwo Wyższe nr 1(49), s. 63–78.
Marenbon J. (1997). The Philosophy of Peter Abelard, Cambridge: Cambridge University Press.
Mosakowski R. (2002), Szkolnictwo wyższe w krajach Unii Europejskiej. Stan obecny i planowane reformy, Gdańsk: Wydawnictwo Politechniki Gdańskiej.
Noble K.A. (1994), Changing Doctoral Degrees: an International Perspective, Buckingham, Bristol: Society for Research into Higher Education: Open University Press.
Jamblich (1993), O życiu pitagorejskim, Wrocław: Epsilon.
Popper K.R. (2006), Społeczeństwo otwarte i jego wrogowie, t. 2, Warszawa: Wydawnictwo Naukowe PWN.
Porfiriusz (1993), Żywot Pitagorasa, Wrocław: Epsilon.
Roemer R.Ch, Borchard R. (2015), Meanigful Metrics, Chicago, Illinois: The Association of College & Research Libraries, a division of the American Library Association.
Skoble A.J. (2019), Tenure: The Good Outweighs the Bad – A Surresponse to James E. Bruce, Journal of Markets & Morality, t. 22, nr 1: 207–210.
Structure of the U.S. Education System: Research Doctorate Degrees. U.S. Department of Education. Archived from the original on 27 January 2012. Retrieved 1 October 2021.
Towpik E. (2015), IF-mania: Journal Impact Factor jest właściwym wskaźnikiem oceniania wyników badań naukowych, indywidualnych uczonych ani ośrodków badawczych, Nowotwory Journal of Oncology, t. 65, nr 6, s. 465–475.
Trevelyan G.M. (1961), Historia społeczna Anglii. Od Chaucera do Wiktorii, Warszawa: PIW.
Tuora-Schwierskott E., Malicka A. (2015), Struktura szkolnictwa wyższego w świetle Ustawy o Szkolnictwie Wyższym w Republice Federalnej Niemiec, Przegląd Prawa i Administracji CIII, s. 301–318.
Walicki A. (2014), Odpowiedź na ankietę „Przeglądu Filozoficznego”, Przegląd Filozoficzny – Nowa Seria nr 1 (89).
Williams J. (2001) Arius: Heresy and Tradition. Eerdmans: Grand Rapids (MI).
White M., Gribbin J. (1998), Darwin. Żywot uczonego, Warszawa: Prószyński i S-ka.
Go to article

Authors and Affiliations

Zbigniew Drozdowicz
1
ORCID: ORCID

  1. Instytut Kulturoznawstwa, Uniwersytet im. Adama Mickiewicza, Poznań
Download PDF Download RIS Download Bibtex

Abstract

In these considerations, I undertake a polemic with thinking based on the assumption that the value of scientific achievements can be measured with almost mathematical accuracy and give fully reliable point indicators for them. It is not only part of those who introduce the current reform of higher education and science in Poland, but also experts who support them, as well as some representatives of science and natural sciences. This thinking was called point syndrome and expert syndrome. Although it was diagnosed as a manifestation of academic disease a few years ago, it still not only finds its supporters, but also translates into activities, which in some scholars cause astonishment, in others indignation, and still strong opposition in others.

Go to article

Authors and Affiliations

Zbigniew Drozdowicz
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Agile Project Management is a topic that has become popular both in business and academia, since the publication of the Agile Manifesto – a historic landmark in this subject. In the next 20 years, there was a relevant scientific production that must be analyzed to provoke reflection about the knowledge built up in this period. In this sense, this study aims to analyze the relevant scientific literature on Agile Project Management through a systematic review and a bibliometric analysis of articles published in scientific journals with Digital Object Identifier, in English, from the Web of Science and Scopus databases, from 2001 to 2021. The research results enable us to gain insights into the characteristics of this knowledge domain, regarding its volume and evolutionary trend, main contributors (i.e. scientific journals, authors, and their affiliations), main studies, methods used, and its central thematic axes.
Go to article

Authors and Affiliations

Antonio Carlos Pacagnella Junior
1
Vinicius Romeiro da Silva
1

  1. State University of Campinas, School of Applied Sciences, Production Engineering Center (CENPRO), Brazil
Download PDF Download RIS Download Bibtex

Abstract

The study employs a bibliometric approach, analyzing global literature from the Scopus database related to user acceptance based on emotional responses to products. Initially, 749 documents were identified, narrowed down to 378 final-stage journal articles published in English. The data collected comprises information from the last 10 years (2013–2023). These were analyzed using Vos Viewer for bibliometric network visualization and R-biblioshiny for additional analysis. The research, conducted in November 2023, used the following specific search strings (TITLE-ABS-KEY (“Emotional response”) AND TITLE-ABS-KEY (product* OR device*) AND TITLE-ABS-KEY (measur* OR assess* OR evaluat*)). The study highlights the increasing research on emotional responses to products, with a 9.6% annual growth in publications. While the USA, UK, Spain, and Australia lead in this field. Five topic clusters identified involve emotional response measurement, behavior related to product acceptability, the user of the product, behavioral symptoms, and emotion psychology. Emerging areas include consumer goods and product design, with a future focus on physiological assessment, emotional reaction’s impact on design, and consumer purchase intentions. Density visualization suggests further exploration in wearable technology, purchase intentions, and emotional response measurements like electroencephalography, electromyography, electrophysiology, facial expression, and skin conductance.
Go to article

Authors and Affiliations

Lina Dianati FATHIMAHHAYATI
Fitri TRAPSILAWATI
Ardiyanto ARDIYANTO
Herianto HERIANTO
Download PDF Download RIS Download Bibtex

Abstract

Due to the widespread presence and harmfulness of heavy metals in the environment, scholars around the world have evaluated the exposure characteristics and health risks of heavy metals. To understand the status, hotspots, and development treads of heavy metal health risk assessment research, we used bibliometric analysis tools to conduct scientometric analysis of the literature related to the health risk assessment of heavy metals in the Web of Science database from 2000 to 2022. The analysis results indicate that research related to heavy metal health risk assessment is rapidly developing in both developed and developing countries. China’s significant international influence in this field is worth noting, as there are many publications and highly cited documents related to China. France and other developed countries also play an important role in this field due to their high centrality and strong bursts. The results of co-citation cluster analysis and keyword co-occurrence analysis indicate that in the past two decades, the primary research domains and hotspots of heavy metal health risk assessment have been the study of heavy metals in soil, dust, drinking water, vegetables, fish, and sediment. There is a specific focus on bioaccumulation, bioavailability, source apportionment, and spatial distribution of heavy metals. The main types of heavy metals studied are lead, cadmium, mercury, and zinc. The results of the bursts keywords analysis suggest that future research trends may focus more on the health risks of heavy metals in different functional areas of cities.
Go to article

Bibliography

  1. Alam, A., Chaudhry, M. N., Ahmad, S. R., Batool, A., Mahmood, A. & Al-Ghamdi, H. A. (2021). Application of EASEWASTE model for assessing environmental impacts from solid waste landfilling. Archives of Environmental Protection. 47(4), pp. 84–92, DOI:10.24425/aep.2021.139504
  2. Ali, H., Khan, E. & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 6730305. DOI: 10.1155/2019/6730305
  3. Antoniadis, V., Shaheen, S. M., Boersch, J., Frohne, T., Laing, G. D. & Rinklebe, J. (2017). Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soils around a highly contaminated former mining area in Germany. Journal of Environmental Management, 186, pp. 192–200. DOI: 10.1016/j.jenvman.2016.04.036
  4. Aoshima, K. (2012). Itai-itai disease: cadmium-induced renal tubular osteomalacia-current situations and future perspectives. Japanese Journal of Hygiene, 67, pp. 455–463. DOI: 10.1265/jjh.67.455
  5. Börner, K., Chen, C. & Boyack K. W. (2003). Visualizing knowledge domains. Annual Review of Information Science and Technology, 37, pp. 179–255. DOI:10.1002/aris.1440370106
  6. Cai, M., An, C. & Guy, C. (2021). A scientometric analysis and review of biogenic volatile organic compound emissions: Research hotspots, new frontiers, and environmental impliations. Renewable and Sustainable Energy Reviews, 149, 111317. DOI:10.1016/j.rser.2021.111317
  7. Cao, S., Duan, X., Zhao, X., Ma, J., Dong, T., Huang, N., Sun, C., He, B. & Wei, F. (2014). Health risks from the exposure of children to As, Se, Pb and other heavy metals near the largest coking plant in China. Science of the Total Environment, 472, pp. 1001–1009. DOI:10.1016/j.scitotenv.2013.11.124
  8. Chen, C. (2005). The centrality of pivotal points in the evolution of scientific networks. In Proceedings of the 10th international conference on Intelligent user interfaces (IUI '05). Association for Computing Machinery, New York, USA, pp. 98–105. DOI:10.1145/1040830.1040859
  9. Chen, C. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), pp. 359–377. DOI:10.1002/asi.20317
  10. Chen, C., Ibekwe-SanJuan F. & Hou J. (2010). The structure and dynamics of cocitation clusters: A multiple-perspective cocitation analysis. Journal of the American Society for Information Science and Technology, 61(7), pp. 1386–1409. DOI:10.1002/asi.21309
  11. Chen, C., Hu, Z., Liu, S. & Tseng, H. (2012). Emerging trends in regenerative medicine: a scientometric analysis in CiteSpace. Expert Opinion on Biological Therapy, 12(5), pp. 593–608. DOI:10.1517/14712598.2012.674507
  12. Chen, C., Dubin, R. & Kim, M. C. (2014). Orphan drugs and rare diseases: a scientometric review (2000–2014). Expert Opinion on Orphan Drugs, 2(7), pp. 709–724. DOI:10.1517/21678707.2014.920251
  13. Chen, H., Zheng, C., Tu, C. & Zhu, Y. (1999). Heavy metal pollution in soils in China: status and countermeasures. Ambio, 28(2), pp. 130–134. DOI:10.1080/027868299304679
  14. Chen, H., Teng, Y., Lu, S., Wang, Y. & Wang, J. (2015). Contamination features and health risk of soil heavy metals in China. Science of the Total Environment, 512–513, pp. 143–153. DOI:10.1016/j.scitotenv.2015.01.025
  15. Chen, X., Li, F., Zhang, J., Liu, S., Ou, C., Yan, J. & Sun, T. (2021). Status, fuzzy integrated risk assessment, and hierarchical risk management of soil heavy metals across China: a systematic review. Science of the Total Environment, 785, 147180. DOI:10.1016/j.scitotenv.2021.147180
  16. Cui, Y., Mou, J. & Liu, Y. (2018). Knowledge mapping of social commerce research: a visual analysis using CiteSpace. Electronic Commerce Research, 18, pp. 837–868. DOI:10.1007/s10660-018-9288-9
  17. De Miguel, E., Iribarren, I., Chacón, E., Ordoñez, A. & Charlesworth, S. (2007). Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere, 66, pp. 505–513. DOI: 0.1016/j.chemosphere.2006.05.065
  18. De Rosa, E., Montuori, P., Sarnacchiaro, P., Di Duca, F., Giovinetti, M. C., Provvisiero, D. P., Cavicchia, C. & Triassi, M. (2022). Spatiotemporal estimation of heavy metals pollution in the Mediterranean Sea from Volturno River, southern Italy: distribution, risk assessment and loads. Chemistry and Ecology, 38(4), pp. 327-355. DOI:10.1080/02757540.2022.2047950
  19. Dhital, S., Rupakheti, D., Rupakheti, M., Yin, X., Liu, Y., Mafiana, J. J., Alareqi, M. M., Mohamednour, H. & Zhang, B. (2022). A scientometric analysis of indoor air pollution research during 1990–2019. Journal of Environmental Management, 320, 115736. DOI:10.1016/j.jenvman.2022.115736
  20. Egghe, L. (2006). Theory and practise of the g-index. Scientometrics, 69, pp. 131–152. DOI:10.1007/s11192-006-0144-7
  21. Ellegaard, O. & Wallin, J. A. (2015). The bibliometric analysis of scholarly production: How great is the impact?. Scientometrics, 105, pp. 1809–1831. DOI:10.1007/s11192-015-1645-z
  22. Eslami, H., Esmaeili, A., Razaeian, M., Salari, M., Hosseini, A. N., Mobini, M. & Barani, A. (2022). Potentially toxic metal concentration, spatial distribution, and health risk assessment in drinking groundwater resources of southeast Iran. Geoscience Frontiers, 13, 101276. DOI:10.1016/j.gsf.2021.101276
  23. European Parliament and Council of the European Union (2003). Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment. Official Journal of the European Union, pp. 19–23.
  24. Fakhri, Y., Daraei, H., Hoseinvandtabar, S., Mehri, F., Mahmudiono, T. & Khaneghah, A. M. (2022). The concentration of the potentially toxic element (PTEs) in black tea (Camellia sinensis) consumed in Iran: a systematic review, meta-analysis, and probabilistic risk assessment study. International Journal of Environmental Analytical Chemistry, DOI:10.1080/03067319.2022.2118596.
  25. Fan, P., Lu, X., Yu, B., Fan, X., Wang, L., Lei, K., Yang, Y., Zuo, L. & Rinklebe, J. (2022). Spatial distribution, risk estimation and source apportionment of potentially toxic metal(loid)s in resuspended megacity street dust. Environment International, 160, 107073. DOI:10.1016/j.envint.2021.107073
  26. Fathabad, A. E., Shariatifar, N., Moazzen, M., Nazmara, S., Fakhri, Y., Alimohammadi, M., Azari, A. & Khaneghah, A. M. (2018). Determination of heavy metal content of processed fruit products from Tehran's market using ICP- OES: A risk assessment study. Food and Chemical Toxicology, 115, pp. 436–446. DOI:10.1016/j.fct.2018.03.044
  27. Fei, X., Lou, Z., Xiao, R., Lv, X. & Christakos, G. (2023). Contamination and health risk assessment of heavy metal pollution in soils developed from different soil parent materials. Exposure and Health, 15, pp. 395–408. DOI:10.1007/s12403-022-00498-w
  28. Ferreira-Baptista, L. & De Miguel, E. (2005). Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmospheric Environment, 39, pp. 4501–4512. DOI:10.1016/j.atmosenv.2005.03.026
  29. Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 40(1), pp. 35–41. DOI: 10.2307/3033543
  30. Geng, Y., Zhu, R. & Maimaituerxun, M. (2022). Bibliometric review of carbon neutrality with CiteSpace: evolution, trends, and framework. Environmental Science and Pollution Research, 29, pp. 76668–76686. DOI:10.1007/s11356-022-23283-3
  31. Gong, Y., Zhao, D. & Wang, Q. (2018). An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: Technical progress over the last decade. Water Research, 147, pp. 440–460. DOI:10.1016/j.watres.2018.10.024
  32. Grochowska, J. K., Tandyrak, R., Augustyniak, R., Łopata, M., Popielarczyk, D. & Templin, T. (2021). How we can disrupt ecosystem of urban lakes – pollutants of bottom sediment in two shallow water bodies. Archives of Environmental Protection, 47(4), pp. 40–54, DOI:10.24425/aep.2021.139501
  33. Guo, K., Liu, Y.F., Zeng, C., Chen, Y.Y. & Wei, X.J. (2014). Global research on soil contamination from 1999 to 2012: A bibliometric analysis. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 64(5), pp. 377–391. DOI:10.1080/09064710.2014.913679
  34. Håkanson, L. (1980). An ecological risk index for aquatic pollution control: a sedimentological approach. Water Research, 14, pp. 975–1001. DOI:10.1016/0043-1354(80)90143-8
  35. Han, M., Yang, F. & Sun, H. (2021). A bibliometric and visualized analysis of research progress and frontiers on health effects caused by PM2.5. Environmental Science and Pollution Research, 28, pp. 30595–30612. DOI:10.1007/s11356-021-14086-z
  36. Hossini, H., Shafie, B., Niri, A. D., Nazari, M., Esfahlan, A. J., Ahmadpour, M., Nazmara, Z., Ahmadimanesh, M., Makhdoumi, P., Mirzaei N. & Hoseinzadeh, E. (2022). A comprehensive review on human health effects of chromium: insights on induced toxicity. Environmental Science and Pollution Research, 29, pp. 70686–70705. DOI:10.1007/s11356-022-22705-6
  37. Hu, X., Zhang, Y., Ding, Z., Wang, T., Lian, H., Sun, Y. & Wu, J. (2012). Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmospheric Environment, 57, pp. 146–152. DOI:10.1016/j.atmosenv.2012.04.056
  38. Hu, X., Zhang, Y., Luo, J., Wang, T., Lian, H. & Ding, Z. (2011). Bioaccessibility and health risk of arsenic, mercury and other metals in urban street dusts from a mega-city, Nanjing, China. Environmental Pollution, 159, pp. 1215–1221. DOI:10.1016/j.envpol.2011.01.037
  39. Huang, J., Guo, S., Zeng, G., Li, F., Gu, Y., Shi, Y., Shi, L., Liu, W. & Peng, S. (2018). A new exploration of health risk assessment quantification from sources of soil heavy metals under different land use. Environmental Pollution, 243, pp. 49–58. DOI:10.1016/j.envpol.2018.08.038
  40. Ivaneev, A. I., Brzhezinskiy, A. S., Karandashev, V. K., Ermolin, M. S. & Fedotov, P. S. (2023). Assessment of sources, environmental, ecological, and health risks of potentially toxic elements in urban dust of Moscow megacity, Russia. Chemosphere, 321, 138142. DOI:10.1016/j.chemosphere.2023.138142
  41. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B. & Beeregowda, K.N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), pp. 60–72. DOI:10.2478/intox-2014-0009
  42. Järup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68, pp. 167–182. DOI:10.1093/bmb/ldg032
  43. Ji, A., Wang, F., Luo, W., Yang, R., Chen, J. & Cai, T. (2011). Lead poisoning in China: a nightmare from industrialisation. Lancet, 377(9776), pp. 1474–1476. DOI:10.1016/S0140-6736(10)60623-X
  44. Jiang, Y., Chao, S., Liu, J., Yang, Y., Chen, Y., Zhang, A. & Cao, H. (2017). Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere, 168, pp. 1658–1668. DOI:10.1016/j.chemosphere.2016.11.088
  45. Khan, D. A., Qayyum, S., Saleem, S., Ansari, W. M. & Khan, F. A. (2010). Lead exposure and its adverse health effects among occupational worker's children. Toxicology and Industrial Health, 26(8), pp. 497 –504. DOI:10.1177/0748233710373085
  46. Khan, S., Cao, Q., Zheng, Y. M., Huang, Y. Z. & Zhu, Y. G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution, 152, pp. 686–692. DOI:10.1016/j.envpol.2007.06.056
  47. Kleinberg, J. (2003). Bursty and hierarchical structure in streams. Data Mining and Knowledge Discovery, 7, pp. 373–397. DOI:10.1023/A:1024940629314
  48. Komárek, M., Ettler, V., Chrastný, V. & Mihaljevič, M. (2008). Lead isotopes in environmental sciences: A review. Environment International, 34, pp. 562–577. DOI:10.1016/j.envint.2007.10.005
  49. Kumari, M. & Bhattacharya, T. (2023). A review on bioaccessibility and the associated health risks due to heavy metal pollution in coal mines: Content and trend analysis. Environmental Development, 46, 100859. DOI:10.1016/j.envdev.2023.100859
  50. Li, F., Yan, J., Wei, Y., Zeng, J., Wang, X., Chen, X., Zhang, C., Li, W., Chen, M. & Lv, G. (2020). PM2.5-bound heavy metals from the major cities in China: Spatiotemporal distribution, fuzzy exposure assessment and health risk management. Journal of Cleaner Production, 286, 124967. DOI:10.1016/j.jclepro.2020.124967
  51. Li, M., Wang, Y., Xue, H., Wu, L., Wang, Y., Wang, C., Gao, X., Li, Z., Zhang, X., Hasan, M., Alruqi, M., Bokhari, A. & Han, N. (2022). Scientometric analysis and scientific trends on microplastics research. Chemosphere, 304, 135337. DOI:10.1016/j.chemosphere.2022.135337
  52. Li, Z., Ma, Z., van der Kuijp, T. J., Yuan, Z. & Huang, L. (2014). A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of the Total Environment, 468–469, pp. 843–853. DOI:10.1016/j.scitotenv.2013.08.090
  53. Liu, X., Song, Q., Tang, Y., Li, W., Xu, J., Wu, J., Wang, F. & Brookes, P. C. (2013). Human health risk assessment of heavy metals in soil–vegetable system: A multi-medium analysis. Science of the Total Environment, 463–464, pp. 530–540. DOI:10.1016/j.scitotenv.2013.06.064
  54. Liu, Z., Yin, Y., Liu, W. & Dunford, M. (2015). Visualizing the intellectual structure and evolution of innovation systems research: a bibliometric analysis. Scientometrics, 103, pp. 135–158. DOI:10.1007/s11192-014-1517-y
  55. López, L. A., Arce, G., Kronenberg, T. & Rodrigues, J. F. D. (2018). Trade from resource-rich countries avoids the existence of a global pollution haven hypothesis. Journal of Cleaner Production, 175, pp. 599–611. DOI:10.1016/j.jclepro.2017.12.056
  56. Lu, X., Zhang, X., Li, L.Y. & Chen, H. (2014). Assessment of metals pollution and health risk in dust from nursery schools in Xi’an, China. Environmental Research, 128, pp. 27–34. DOI:10.1016/j.envres.2013.11.007
  57. Luo, H., Wang, Q., Guan, Q., Ma, Y., Ni, F., Yang, E. & Zhang, J. (2022). Heavy metal pollution levels, source apportionment and risk assessment in dust storms in key cities in Northwest China. Journal of Hazardous Materials, 422, 126878. DOI:10.1016/j.jhazmat.2021.126878
  58. Mahmood, A. & Malik, R. N. (2014). Human health risk assessment of heavy metals via consumption of contaminated vegetables collected from different irrigation sources in Lahore, Pakistan. Arabian Journal of Chemistry, 7, pp. 91–99. DOI:10.1016/j.arabjc.2013.07.002
  59. Mahmudiono, T., Fakhri, Y., Adiban, M., Sarafraz, M. & Mohamadi, S. (2023). Concentration of potential toxic elements in canned tuna fish: systematic review and health risk assessment. International Journal of Environmental Health Research, DOI:10.1080/09603123.2023.2264205
  60. Masri, S., LeBrón, A. M. W., Logue, M. D., Valencia, E., Ruiz, A., Reyes, A. & Wu, J. (2021). Risk assessment of soil heavy metal contamination at the census tract level in the city of Santa Ana, CA: implications for health and environmental justice. Environmental Science: Processes & Impacts, 23, pp. 812–830. DOI:10.1039/d1em00007a
  61. Men, C., Liu, R., Xu, F., Wang, Q., Guo, L. & Shen, Z. (2018). Pollution characteristics, risk assessment, and source apportionment of heavy metals in road dust in Beijing, China. Science of the Total Environment, 612, pp. 138–147. DOI:10.1016/j.scitotenv.2017.08.123
  62. Merigó, J. M. & Yang, J.-B. (2017). A bibliometric analysis of operations research and management science. Omega, 73, pp. 37–48. DOI:10.1016/j.omega.2016.12.004
  63. Muhammad, S., Shah, M.T. & Khan, S. (2011). Health risk assessment of heavy metals and their source apportionment in drinking water of Kohistan region, northern Pakistan. Microchemical Journal, 98, pp. 334–343. DOI:10.1016/j.microc.2011.03.003
  64. Peng, J., Zhang, S., Han, Y., Bate, B., Ke, H. & Chen, Y. (2022). Soil heavy metal pollution of industrial legacies in China and health risk assessment. Science of the Total Environment, 816, 151632. DOI:10.1016/j.scitotenv.2021.151632
  65. Qin, F., Li, J., Zhang, C., Zeng, G., Huang, D., Tan, X., Qin, D. & Tan, H. (2022). Biochar in the 21st century: a data-driven visualization of collaboration, frontier identification, and future trend. Science of the Total Environment, 818, 151774. DOI:10.1016/j.scitotenv.2021.151774
  66. Rai, P. K., Lee, S. S., Zhang, M., Tsang, Y. F. & Kim, K.-H. (2019). Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environment International, 125, pp. 365–385. DOI:10.1016/j.envint.2019.01.067
  67. Sabe, M., Pillinger, T., Kaiser, S., Chen, C., Taipale, H., Tanskanen, A., Tiihonen, J., Leucht, S., Correll, C. U. & Solmi, M. (2022). Half a century of research on antipsychotics and schizophrenia: A scientometric study of hotspots, nodes, bursts, and trends. Neuroscience and Biobehavioral Reviews, 136, 104608. DOI:10.1016/j.neubiorev.2022.104608
  68. Saha, K. C. (2003). Review of arsenicosis in West Bengal, India—a clinical perspective. Critical Reviews in Environmental Science and Technology, 33(2), pp. 127–163. DOI:10.1080/10643380390814514
  69. Shahab, A., Hui, Z., Rad, S., Xiao, H., Siddique, J., Huang, L. L., Ullah, H., Rashid, A., Taha, M. R. & Zada, N. (2023). A comprehensive review on pollution status and associated health risk assessment of human exposure to selected heavy metals in road dust across different cities of the world. Environmental Geochemistry and Health, 45, pp. 585–606. DOI:10.1007/s10653-022-01255-3
  70. Shaheen, N., Irfan, N. M., Khan, I. N., Islam, S., Islam, M. S. & Ahmed, M. K. (2016). Presence of heavy metals in fruits and vegetables: Health risk implications in Bangladesh. Chemosphere, 152, pp. 431–438. DOI:10.1016/j.chemosphere.2016.02.060
  71. Shen, Z., Wu, H., Chen, Z., Hu, J., Pan, J., Kong, J. & Lin, T. (2022). The global research of artificial intelligence on prostate cancer: A 22-year bibliometric analysis. Frontiers in Oncology, 12, 843735. DOI:10.3389/fonc.2022.843735
  72. Small, H. (1973). Co-citation in the scientific literature: A new measure of the relationship between two documents. Journal of the American Society and Information Science, 24, pp. 265–269. DOI:10.1002/asi.4630240406
  73. Smith, A. H., Lingas, E. O. & Rahman, M. (2000). Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bulletin of the World Health Organization, 78, pp. 1093–1103. DOI:10.1146/annurev.publhealth.21.1.659
  74. Sultana, Z., Rehman, M. Y. A., Khan, H. K. & Malik, R. N. (2023). Health risk assessment associated with heavy metals through fractioned dust from coal and chromite mines in Pakistan. Environmental Geochemistry and Health, 45, pp. 1617–1633. DOI:10.1007/s10653-022-01285-x
  75. Trujillo-González, J. M., Torres-Mora, M. A., Keesstra, S., Brevik, E. C. & Jiménez-Ballesta, R. (2016). Heavy metal accumulation related to population density in road dust samples taken from urban sites under different land uses. Science of the Total Environment, 553, pp. 636–642. DOI:10.1016/j.scitotenv.2016.02.101
  76. Urbano, T., Verzelloni, P., Malavolti, M., Sucato, S., Polledri, E., Agnoli, C., Sieri, S., Natalini, N., Marchesi, C., Fustinoni, S., Vinceti, M. & Filippini, T. (2023). Influence of dietary patterns on urinary excretion of cadmium in an Italian population: A cross-sectional study. Journal of Trace Elements in Medicine and Biology, 80, 127298. DOI:10.1016/j.jtemb.2023.127298
  77. USEPA (United States Environmental protection Agency). (1989). Risk Assessment Guidance for Superfund (RAGS): Volume I. Human Health Evaluation Manual (HHEM)–Part A, Baseline Risk Assessment. Office of Emergency and Remedial Response, Washington DC [EPA/540/1-89/002].
  78. USEPA (2008). Overview: Office of pollution prevention and Toxics laws and programs.
  79. Wang, J., Cai, Y., Yang, J. & Zhao, X. (2021). Research trends and frontiers on source appointment of soil heavy metal: a scientometric review (2000–2020). Environmental Science and Pollution Research, 28, pp. 52764–52779. DOI:10.1007/s11356-021-16151-z
  80. Wei, X., Gao, B., Wang, P., Zhou, H. & Lu, J. (2015). Pollution characteristics and health risk assessment of heavy metals in street dusts from different functional areas in Beijing, China. Ecotoxicology and Environmental Safety, 112, pp. 186–192. DOI:10.1016/j.ecoenv.2014.11.005
  81. WHO (2011). Guidelines for Drinking-water Quality, fourth ed. World Health Organization, Geneva.
  82. Wu, Q., Hu, W., Wang, H., Liu, P., Wang, X. & Huang, B. (2021). Spatial distribution, ecological risk and sources of heavy metals in soils from a typical economic development area, Southeastern China. Science of the Total Environment, 780, 146557. DOI:10.1016/j.scitotenv.2021.146557
  83. Xiao, F., Li, C., Sun, J. & Zhang, L. (2017). Knowledge domain and emerging trends in organic photovoltaic technology: A scientometric review based on CiteSpace analysis. Frontiers in Chemistry, 5, 67. DOI:10.3389/fchem.2017.00067
  84. Xiao, Q., Zong, Y. & Lu, S. (2015). Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotoxicology and Environmental Safety, 120, pp. 377–385. DOI:10.1016/j.ecoenv.2015.06.019
  85. Yan, J., Qu, Z., Li, F. & Li, H. (2021). Heavy metals in the water environment of Yangtze River Economic Belt: status, fuzzy environmental risk assessment and management. Urban Climate, 40, 100981. DOI:10.1016/j.uclim.2021.100981
  86. Yang, Q., Li, Z., Lu, X., Duan, Q., Huang, L. & Bi, J. (2018). A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Science of the Total Environment, 642, pp. 690–700. DOI:10.1016/j.scitotenv.2018.06.068
  87. Yang, Y. & Meng, G. (2019). A bibliometric analysis of comparative research on the evolution of international and Chinese ecological footprint research hotspots and frontiers since 2000. Ecological Indicators, 102, pp. 650–665. DOI:10.1016/j.ecolind.2019.03.031
  88. Yi, Y., Yang, Z. & Zhang, S. (2011). Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environmental Pollution, 159, pp. 2575–2585. DOI:10.1016/j.envpol.2011.06.011
  89. Zhang, J., Jiang, L., Liu, Z., Li, Y., Liu, K., Fang, R., Li, H., Qu, Z., Liu, C. & Li, F. (2021). A bibliometric and visual analysis of indoor occupation environmental health risks: Development, hotspots and trend directions. Journal of Cleaner Production, 300, 126824. DOI:10.1016/j.jclepro.2021.126824
  90. Zheng, N., Liu, J., Wang, Q. & Liang, Z. (2010). Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China. Science of the Total Environment, 408, pp. 726–733. DOI:10.1016/j.scitotenv.2009.10.075
  91. Zhong, W., Zhang, Y., Wu, Z., Yang, R., Chen, X., Yang, J. & Zhu, L. (2018). Health risk assessment of heavy metals in freshwater fish in the central and eastern North China. Ecotoxicology and Environmental Safety, 157, pp. 343–349. DOI:10.1016/j.ecoenv.2018.03.048
Go to article

Authors and Affiliations

Yingsen Zhang
1
Xinwei Lu
1
Sijia Deng
1
Tong Zhu
1
Bo Yu
1

  1. School of Geography and Tourism, Shaanxi Normal University, China
Download PDF Download RIS Download Bibtex

Abstract

This paper summarizes the arguments and counterarguments within the scientific discussion on the impact of energy-efficient development on promoting the national green brand. The primary purpose of the research is to provide an overview of the scientific background devoted to the relationship between the energy efficiency policy and the country’s green brand to identify the potential research gaps and highlight the prospects for particular research directions. The systematization of scientific publications presented in the Scopus database showed a rapid tendency for publication activity on the investigated theme from 2000 to 2020. However, there has remained a deficiency in investigating the role of energy efficiency policy in formulating the country’s green brand. Therefore, it is appropriate to screen out the relevant publications to detect the future research directions in boosting energy efficiency for strengthening Ukraine’s green brand. To obtain the objectives of this study, the paper is presented in the following logical sequence: determining the keywords to find the relevant publications; searching the publications; conducting the evaluation analysis by specific metrics; applying the bibliometric analysis for the investigation of keywords and their co-occurrence. The co-occurrence analysis was performed using the VOSviewer software tools. The study sample consists of 3090 publications indexed in the Scopus database. The study involved documents published from 2000 to 2020. The research identified the most productive authors, prestigious scientific journals, and the most contributing countries and institutions. The publications were clustered into five thematic groups, which indicate the main research directions. The authors specified the prosperous lines for future research.
Go to article

Bibliography

Ailawadi et al. 2001 – Ailawadi, K.L., Neslin, S.A. and Gedenk, K. 2001. Pursuing the value-conscious consumer: Store brands versus national brand promotions. Journal of Marketing 65(1), pp. 71–89. doi: 10.1509/jmkg.65.1.71.18132.
Bassols, N. 2016. Branding and promoting a country amidst a long-term conflict: The case of Colombia. Journal of Destination Marketing and Management 5(4), pp. 314–324, doi: 10.1016/j.jdmm.2016.10.001.
Batra et al. 2000 – Batra, R., Ramaswamy, V., Alden, D.L., Steenkamp, J.-B. and Ramachander, S. 2000. Effects of brand local and nonlocal origin on consumer attitudes in developing countries. Journal of Consumer Psychology 9(2), pp. 83–95, DOI: 10.1207/s15327663jcp0902_3.
Butt et al. 2017 – Butt, M.M., Mushtaq, S., Afzal, A., Khong, K.W., Ong, F.S. and Ng, P.F. 2017. Integrating behavioural and branding perspectives to maximize green brand equity: A holistic approach. Business Strategy and the Environment 26(4), pp. 507–520, DOI: 10.1002/bse.1933.
Cabinet of Ministers of Ukraine. Audit of the economy of Ukraine. [Online] https://nes2030.org.ua/docs/doc-audit.pdf [Accessed: 2021-06-30].
Chygryn, O. and Krasniak, V. 2015. Theoretical and applied aspects of the development of environmental investment in Ukraine. Marketing and management of innovations 3, pp. 226–234.
Chygryn et al. 2021 – Chygryn, O., Rosokhata, A., Rybina, O. and Stoyanets, N. 2021. Green competitiveness: The evolution of concept formation. Paper presented at the E3S Web of Conferences 234 doi: 10.1051/e3sconf/202123400004.
Dzwigol, H. 2020. Innovation in Marketing Research: Quantitative and Qualitative Analysis. Marketing and Management of Innovations 1, pp. 128–135, DOI: 10.21272/mmi.2020.1-10.
El Amri et al. 2020 – El Amri, A., Boutti, R., Oulfarsi, S., Rodhain, F. and Bouzahir, B. 2020. Carbon financial markets underlying climate risk management, pricing and forecasting: Fundamental analysis. Financial Markets, Institutions and Risks 4(4), pp. 31–44, DOI: 10.21272/fmir.4(4).31- 44.2020.
Goncharenko, T. 2020. From Business Modelling to the Leadership and Innovation in Business: Bibliometric Analysis (Banking as a Case). Business Ethics and Leadership 4(1), pp. 113–125, DOI: 10.21272/bel.4(1).113-125.2020.
Haberl et al. 2020 – Haberl, H., Wiedenhofer, D., Virág, D., Kalt, G., Plank, B., Brockway, P., Creutzig, F. 2020. A systematic review of the evidence on decoupling of GDP, resource use and GHG emissions, part II: Synthesizing the insights. Environmental Research Letters 15(6), DOI: 10.1088/1748-9326/ab842a.
Hakobyan et al. 2019 – Hakobyan, N., Khachatryan, A., Vardanyan, N., Chortok, Y. and Starchenko, L. 2019. The Implementation of Corporate Social and Environmental Responsibility Practices into Competitive Strategy of the Company. Marketing and Management of Innovations 2, pp. 42–51, DOI: 10.21272/mmi.2019.2-04.
Hussain et al. 2020 – Hussain, S.A., Haq, M.A.U. and Soomro, Y.A. 2020. Factors Influencing Consumers’ Green Purchase Behavior: Green Advertising as Moderator. Marketing and Management of Innovations 4, pp. 144–153, DOI: 10.21272/mmi.2020.4-11.
Kharazishvili et al. 2021 – Kharazishvili, Y., Kwilinski, A., Sukhodolia, O., Dzwigol, H., Bobro, D. and Kotowicz, J. 2021. The systemic approach for estimating and strategizing energy security: The case of Ukraine. Energies 14(8), DOI: 10.3390/en14082126.
Khomenko et al. 2020 – Khomenko, L., Saher, L. and Polcyn, J. 2020. Analysis of the marketing activities in the blood service: bibliometric analysis. Health Economics and Management Review 1, pp. 20–36, DOI: 10.21272/hem.2020.1-02.
Kuzior et al. 2021 – Kuzior, A., Kwilinski, A. and Hroznyi, I. 2021. The factorial-reflexive approach to diagnosing the executors’ and contractors’ attitude to achieving the objectives by energy supplying companies. Energies 14(9), DOI: 10.3390/en14092572.
Li et al. 2018 – Li, X., Du, J. and Long, H. 2018. A comparative study of Chinese and foreign green development from the perspective of mapping knowledge domains. Sustainability (Switzerland) 10(12) doi: 10.3390/su10124357.
Noble et al. 2002 – Noble, C.H., Sinha, R.K. and Kumar, A. 2002. Market orientation and alternative strategic orientations: A longitudinal assessment of performance implications. Journal of Marketing, 66(4), pp. 25–39, doi: 10.1509/jmkg.66.4.25.18513.
Panchenko et al. 2020 – Panchenko, V., Harust, Yu., Us, Ya., Korobets, O. and Pavlyk, V. 2020. Energy- Efficient Innovations: Marketing, Management and Law Supporting. Marketing and Management of Innovations 1, pp. 256–264, DOI: 10.21272/mmi.2020.1-21.
Pavlyk, V. 2020. Institutional Determinants Of Assessing Energy Efficiency Gaps In The National Economy. SocioEconomic Challenges 4(1), pp. 122–128, DOI: 10.21272/sec.4(1).122-128.2020.
Polcyn, J. 2021. Eco-efficiency and human capital efficiency: Example of small-and medium-sized family farms in selected European countries. Sustainability (Switzerland) 13(12), DOI: 10.3390/su13126846.
Scopus. [Online] https://www.scopus.com/search/form.uri?display=basic [Accessed: 2021-06-11].
Singh, S.N. 2019. Private Investment and Business Opportunities in Ethiopia: A Case Study of Mettu Town in Ethiopia. Business Ethics and Leadership 3(4), pp. 91–104, DOI: 10.21272/bel.3(4).91-104.2019.
Vasylieva et al. 2017 – Vasylieva, T., Lieonov, S., Makarenko, I. and Sirkovska, N. 2017. Sustainability information disclosure as an instrument of marketing communication with stakeholders: markets, social and economic aspects. Marketing and Management of Innovations 4, pp. 350–357, DOI: 10.21272/mmi.2017.4-31.
Yelnikova, Y. and Golochalova, I. 2020. Social Bonds as an Instrument of Responsible Investment. Financial Markets, Institutions and Risks 4(4), pp. 119–128, DOI: 10.21272/fmir.4(4).119-128.2020.
Yelnikova, Y. and Kuzior, A. 2020. Overcoming The Socio-Economic Consequences Of Military Conflict in Ukraine And The Impact Investment Of Post-Conflict Recovery Of Anti-Terrorist Operation. Socio- Economic Challenges 4(3), pp. 132–142, DOI: 10.21272/sec.4(3).132-142.2020.
Zhylinska et al. 2021 – Zhylinska, O., Firsova, S., Bilorus, T. and Aksom, H. 2021. Employer Brand Management: Methodological Aspects. Marketing and Management of Innovations 1, pp. 158–169, DOI: 10.21272/mmi.2021.1-12.
Go to article

Authors and Affiliations

Yana Us
1
ORCID: ORCID
Tetyana Pimonenko
1
ORCID: ORCID
Oleksii Lyulyov
1
ORCID: ORCID

  1. Department of Marketing, Sumy State University, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The direct motivation for this article is the publication of two updates of the Polish Journal Rankings on 9 and 18 February 2021, which were prepared by the Minister of Education and Science and bypassed the Research Evaluation Commission. This article aims to characterize the changes made by the minister in relation to the draft ranking prepared by the commission. For providing a complete picture of the changes, I describe the main principles for building the ranking according to the new model implemented in 2018. Then, I characterize the minister's changes in terms of added journals and changing the points assigned to the journals. The analysis is provided through the lens of the universities publishing these journals and the disciplines assigned to the journals. The article concludes by identifying four main recommendations that should be implemented to restore the usefulness of the ranking as an instrument of science policy.
Go to article

Authors and Affiliations

Emanuel Kulczycki
1 2

  1. Pracownia Komunikacji Naukowej na Uniwersytecie im. Adama Mickiewicza w Poznaniu
  2. Komisja Ewaluacji Nauki
Download PDF Download RIS Download Bibtex

Abstract

A review is presented of the history of ‘impact factor’ since its introduction in 1955 by Eugene Garfield for assessing scientific periodicals to its present degeneration in the hands of science administrators who enforce its use to classify scientists. Arguments are presented against that procedure. Recently there has been an increase of resistance among scientists and the editors of periodicals who call for replacing bibliometric parameters by peer review assessment of publications.

Go to article

Authors and Affiliations

Andrzej Kajetan Wróblewski
Download PDF Download RIS Download Bibtex

Abstract

The establishment of the Research Network Lukasiewicz (RNL) is aimed at strengthening the research potential and knowledge transfer from research institutes to enterprises. The article presents the results of the research potential analysis of 38 research institutes that are to form the RNL, based on data on scientific publications in 2013–2016. The number of publications of RNL institutes was similar to the number of publications of TNO and VTT institutes but smaller than that of Fraunhofer institutes. The publications of RNL institutes had lower values of indicators of international collaboration and collaboration with business as well as lower values of citation indices. Co-authors of RNL publications were mainly affiliated with national scientific units, whereas co-authorship with Fraunhofer, TNO and VTT institutes was marginal. The article also outlines the limitations and challenges of the adopted research method and future research orientations in this area.

Go to article

Authors and Affiliations

Marcin Kardas
Download PDF Download RIS Download Bibtex

Abstract

Maintaining water quality is essential for numerous fields, but pollution challenges have become more pronounced with population growth and industrial expansion. Although monitoring technologies have advanced, comprehensive watershed analyses remain limited, especially in developing countries. This study conducts a bibliometric review of watershed-scale water quality monitoring research, applying the PRISMA 2020 method alongside tools such as Scopus, VOSviewer, Orange Data Mining, and qualitative content analysis to identify trends, research gaps, and future directions across 107 studies. From 2005 to 2024, there has been a significant rise in research on real-time monitoring systems and spatial modeling in water quality, with notable peaks. The United States leads in publication volume, while 'Watershed Flow Modeling' remains underexplored and underrepresented. Studies show that implementing real-time monitoring systems and spatial modeling in developing countries faces challenges related to infrastructure and funding. However, recent advancements in IoT-based tools and satellite remote sensing are progressively enhancing water resource management.
Go to article

Bibliography

  1. Acuña-Alonso, C., Fernandes, A.C P., Álvarez, X., Valero, E., Pacheco, F.A.L., Varandas, S.D.G.P., Terêncio, D.P.S. & Fernandes, L.F.S. (2021). Water security and watershed management assessed through the modelling of hydrology and ecological integrity: A study in the Galicia-Costa (NW Spain). Science of the Total Environment. 759, 143905. DOI:10.1016/j.scitotenv.2020.143905
  2. Adeyeye, K., Gibberd, J. & Chakwizira, J. (2020). Water marginality in rural and peri-urban communities. Journal of Cleaner Production, 273, 122594. DOI:10.1016/j.jclepro.2020.122594
  3. Ahmed, S.F., Kumar, P.S., Kabir, M., Zuhara, F.T., Mehjabin, A., Tasannum, N., Hoang, A.T., Kabir, Z. & Mofijur, M. (2022). Threats, challenges and sustainable conservation strategies for freshwater biodiversity. Environmental Research. 214, 113808. DOI:10.1016/j.envres.2022.113808
  4. Aloui, S., Mazzoni, A., Elomri, A., Aouissi, J., Boufekane, A. & Zghibi, A. (2023). A review of Soil and Water Assessment Tool (SWAT) studies of Mediterranean catchments: Applications, feasibility, and future directions. Journal of Environmental Management, 326, 116799. DOI:10.1016/j.jenvman.2022.116799
  5. Amalia, A., Fariz, T., Lutfiananda, F., Ihsan, H., Atunnisa, R. & Jabbar, A. (2024). Comparison of SWAT-based ecohydrological modeling in Rawa Pening Catchment Area, Indonesia. Journal Pendidikan IPA Indonesia, 13, 1. DOI:10.15294/jpii.v13i1.45277
  6. Anyango, G.W., Bhowmick, G.D. & Sahoo Bhattacharya, N. (2024). A critical review of irrigation water quality index and water quality management practices in microirrigation for efficient policy making. Desalination and Water Treatment, 318, 100304. DOI:10.1016/j.dwt.2024.100304
  7. Behmel, S., Damour, M., Ludwig, R. & Rodriguez, M. J. (2016). Water quality monitoring strategies — A review and future perspectives. Science of the Total Environment, 571, pp. 1312-1329. DOI:10.1016/j.scitotenv.2016.06.235
  8. Budihardjo, M.A., Humaira, N.G., Ramadan, B.S., Wahyuningrum, I.F.S. & Huboyo, H.S. (2023). Strategies to reduce greenhouse gas emissions from municipal solid waste management in Indonesia: The case of Semarang City. Alexandria Engineering Journal, 69, pp. 771-783. DOI:10.1016/j.aej.2023.02.029
  9. Budihardjo, M.A., Ramadan, B.S., Putri, S.A., Wahyuningrum, I.F.S. & Muhammad, F.I. (2021). Towards Sustainability in Higher-Education Institutions: Analysis of Contributing Factors and Appropriate Strategies. Sustainability, 13, 12, 6562. DOI:10.3390/su13126562
  10. Cham, H., Malek, S., Milow, P. & Ramli, M.R. (2020). Web-based system for visualisation of water quality index. All Life, 13, 1, pp. 426-432. DOI:10.1080/26895293.2020.1788998
  11. Chawla, I., Karthikeyan, L. & Mishra, A.K. (2020). A review of remote sensing applications for water security: Quantity, quality, and extremes. Journal of Hydrology, 585, 124826. DOI:10.1016/j.jhydrol.2020.124826
  12. Chen, X., Chen, J., Wu, D., Xie, Y. & Li, J. (2016). Mapping the Research Trends by Co-word Analysis Based on Keywords from Funded Project. Procedia Computer Science, 91, pp. 547-555. DOI:10.1016/j.procs.2016.07.140
  13. Chen, X., Liu, T., Duulatov, E., Gafurov, A., Omorova, E. & Gafurov, A. (2022). Hydrological Forecasting under Climate Variability Using Modeling and Earth Observations in the Naryn River Basin, Kyrgyzstan. Water, 14, 17, 2733. DOI:10.3390/w14172733
  14. Chow, R., Scheidegger, R., Doppler, T., Dietzel, A., Fenicia, F. & Stamm, C. (2020). A review of long-term pesticide monitoring studies to assess surface water quality trends. Water Research X, 9, 100064. DOI:10.1016/j.wroa.2020.100064
  15. Czatzkowska, M., Wolak, I., Harnisz, M. & Korzeniewska, E. (2022). Impact of Anthropogenic Activities on the Dissemination of ARGs in the Environment—A Review. International Journal of Environmental Research and Public Health, 19, 19. DOI:10.3390/ijerph191912853
  16. Daenekindt, S. & Huisman, J. (2020). Mapping the scattered field of research on higher education. A correlated topic model of 17,000 articles, 1991–2018. Higher Education, 80, 3, pp. 571-587. DOI:10.1007/s10734-020-00500-x
  17. Damanik, A., Janssen, D.J., Tournier, N., Stelbrink, B., von Rintelen, T., Haffner, G.D., Cohen, A., Yudawati Cahyarini, S. & Vogel, H. (2024). Perspectives from modern hydrology and hydrochemistry on a lacustrine biodiversity hotspot: Ancient Lake Poso, Central Sulawesi, Indonesia. Journal of Great Lakes Research, 50, 3, 102254. DOI:10.1016/j.jglr.2023.102254
  18. Dawood, T., Elwakil, E., Novoa, H. M. & Gárate Delgado, J. F. (2021). Toward urban sustainability and clean potable water: Prediction of water quality via artificial neural networks. Journal of Cleaner Production, 291, 125266. DOI:10.1016/j.jclepro.2020.125266
  19. de Vries, B.B.L.P., van Smeden, M., Rosendaal, F.R. & Groenwold, R.H.H. (2020). Title, abstract, and keyword searching resulted in poor recovery of articles in systematic reviews of epidemiologic practice. Journal of Clinical Epidemiology, 121, pp. 55-61. DOI:10.1016/j.jclinepi.2020.01.009
  20. Duttagupta, S., Mukherjee, A., Bhanja, S. N., Chattopadhyay, S., Sarkar, S., Das, K., Chakraborty, S. & Mondal, D. (2020). Achieving sustainable development goal for clean water in India: influence of natural and anthropogenic factors on groundwater microbial pollution. Environmental Management, 66, pp. 742-755. DOI:10.1007/s00267-020-01358-6
  21. Ejaz, H., Zeeshan, H.M., Ahmad, F., Bukhari, S.N., Anwar, N., Alanazi, A., Sadiq, A., Junaid, K., Atif, M., Abosalif, K.O., Iqbal, A., Hamza, M.A. & Younas, S. (2022). Bibliometric Analysis of Publications on the Omicron Variant from 2020 to 2022 in the Scopus Database Using R and VOSviewer. International Journal of Environmental Research and Public Health, 19, 19. DOI:10.3390/ijerph191912407
  22. Fioramonte, B., Campos, M.A.S., De Freitas, S.R. & Basso, R.E. (2022). Rainfall data used for rainwater harvesting systems: a bibliometric and systematic literature review. AQUA—Water Infrastructure, Ecosystems and Society, 71, 7, pp. 816-834. DOI:10.2166/aqua.2022.034
  23. Gao, S., Meng, F., Gu, Z., Liu, Z. & Farrukh, M. (2021). Mapping and Clustering Analysis on Environmental, Social and Governance Field a Bibliometric Analysis Using Scopus. Sustainability, 13, 13. DOI:10.3390/su13137304
  24. Giri, S. (2021). Water quality prospective in Twenty First Century: Status of water quality in major river basins, contemporary strategies and impediments: A review. Environmental Pollution, 271, 116332. DOI:10.1016/j.envpol.2020.116332
  25. Han, X. (2020). Evolution of research topics in LIS between 1996 and 2019: An analysis based on latent Dirichlet allocation topic model. Scientometrics, 125, 3, pp. 2561-2595. DOI:10.1007/s11192-020-03721-0
  26. Heege, T., Kiselev, V., Wettle, M. & Hung, N. N. (2014). Operational multi-sensor monitoring of turbidity for the entire Mekong Delta. International Journal of Remote Sensing, 35, 8, pp. 2910-2926. DOI:10.1080/01431161.2014.890300
  27. Hojjati-Najafabadi, A., Mansoorianfar, M., Liang, T., Shahin, K. & Karimi-Maleh, H. (2022). A review on magnetic sensors for monitoring of hazardous pollutants in water resources. Science of the Total Environment, 824, 153844. DOI:10.1016/j.scitotenv.2022.153844
  28. Huang, J., Zhang, Y., Bing, H., Peng, J., Dong, F., Gao, J. & Arhonditsis, G. B. (2021). Characterizing the river water quality in China: Recent progress and on-going challenges. Water research, 201, 117309. DOI:10.1016/j.watres.2021.117309
  29. Ighalo, J.O., Adeniyi, A.G. & Marques, G. (2021). Artificial intelligence for surface water quality monitoring and assessment: a systematic literature analysis. Modeling Earth Systems and Environment, 7, 2, pp. 669-681. DOI:10.1007/s40808-020-01041-z
  30. Ikhlas, N. & Ramadan, B.S. (2024). Community-based watershed management (CBWM) for climate change adaptation and mitigation: Research trends, gaps, and factors assessment. Journal of Cleaner Production, 434, 140031. DOI:10.1016/j.jclepro.2023.140031
  31. Jiang, J., Tang, S., Han, D., Fu, G., Solomatine, D. & Zheng, Y. (2020). A comprehensive review on the design and optimization of surface water quality monitoring networks. Environmental Modelling & Software, 132, 104792. DOI:10.1016/j.envsoft.2020.104792
  32. Kamyab, H., Khademi, T., Chelliapan, S., SaberiKamarposhti, M., Rezania, S., Yusuf, M., Farajnezhad, M., Abbas, M., Hun Jeon, B. & Ahn, Y. (2023). The latest innovative avenues for the utilization of artificial Intelligence and big data analytics in water resource management. Results in Engineering, 20, 101566. DOI:10.1016/j.rineng.2023.101566
  33. Kasavan, S., Yusoff, S., Rahmat Fakri, M.F. & Siron, R. (2021). Plastic pollution in water ecosystems: A bibliometric analysis from 2000 to 2020. Journal of Cleaner Production, 313, 127946. DOI:10.1016/j.jclepro.2021.127946
  34. Khan, R.M., Salehi, B., Mahdianpari, M., Mohammadimanesh, F., Mountrakis, G. & Quackenbush, L.J. (2021). A Meta-Analysis on Harmful Algal Bloom (HAB) Detection and Monitoring: A Remote Sensing Perspective. Remote Sensing, 13(21). Retrieved from DOI:10.3390/rs13214347
  35. Lamaro, A.A., Mariñelarena, A., Torrusio, S.E. & Sala, S.E. (2013). Water surface temperature estimation from Landsat 7 ETM+ thermal infrared data using the generalized single-channel method: Case study of Embalse del Río Tercero (Córdoba, Argentina). Advances in Space Research, 51, 3, pp. 492-500. DOI:10.1016/j.asr.2012.09.032
  36. Łaszczyca, P., Nakonieczny, M. & Kostecki, M. (2023). Ecotoxicological biotests as tools for continuous monitoring of water quality in dam reservoirs. Archives of Environmental Protection, 49,1, pp. 25-38. DOI:10.24425/aep.2023.144734
  37. Latwal, A., Rehana, S. & Rajan, K. (2023). Detection and mapping of water and chlorophyll-a spread using Sentinel-2 satellite imagery for water quality assessment of inland water bodies. Environmental Monitoring and Assessment, 195, 11, 1304. DOI:10.1007/s10661-023-11874-7
  38. Lee, S., Ryu, Y., Park, H.-J., Lee, I.-S. & Chae, Y. (2022). Characteristics of five-phase acupoints from data mining of randomized controlled clinical trials followed by multidimensional scaling. Integrative Medicine Research, 11, 2, 100829. DOI:10.1016/j.imr.2021.100829
  39. Leong, C. (2021). Narratives and water: A bibliometric review. Global Environmental Change, 68, 102267. DOI:10.1016/j.gloenvcha.2021.102267
  40. Li, J., Tian, L., Wang, Y., Jin, S., Li, T. & Hou, X. (2021). Optimal sampling strategy of water quality monitoring at high dynamic lakes: A remote sensing and spatial simulated annealing integrated approach. Science of the Total Environment, 777, 146113. DOI:10.1016/j.scitotenv.2021.146113
  41. Lindgren, B.-M., Lundman, B. & Graneheim, U.H. (2020). Abstraction and interpretation during the qualitative content analysis process. International Journal of Nursing Studies, 108, 103632. DOI:10.1016/j.ijnurstu.2020.103632
  42. Locke, K.A. (2024). Modelling relationships between land use and water quality using statistical methods: A critical and applied review. Journal of Environmental Management, 362, 121290. DOI:10.1016/j.jenvman.2024.121290
  43. Madzík, P. & Falát, L. (2022). State-of-the-art on analytic hierarchy process in the last 40 years: Literature review based on Latent Dirichlet Allocation topic modelling. PLoS One, 17, 5, e0268777. DOI:10.1371/journal.pone.0268777
  44. Mashala, M.J., Dube, T., Mudereri, B.T., Ayisi, K.K. & Ramudzuli, M.R. (2023). A systematic review on advancements in remote sensing for assessing and monitoring land use and land cover changes impacts on surface water resources in semi-arid tropical environments. Remote Sensing, 15, 16, 3926. DOI:10.3390/rs15163926
  45. Matos, T., Martins, M.S., Henriques, R. & Goncalves, L.M. (2024). A review of methods and instruments to monitor turbidity and suspended sediment concentration. Journal of Water Process Engineering, 64, 105624. DOI:10.1016/j.jwpe.2024.105624
  46. Muhirwa, F., Shen, L., Elshkaki, A., Zhong, S., Hu, S., Hirwa, H., Chiaka, J. C., Umarishavu, F. & Mulinga, N. (2022). Ecological balance emerges in implementing the water-energy-food security nexus in well-developed countries in Africa. Science of the Total Environment, 833, 154999. DOI:10.1016/j.scitotenv.2022.154999
  47. Nobanee, H., Al Hamadi, F.Y., Abdulaziz, F.A., Abukarsh, L.S., Alqahtani, A.F., AlSubaey, S.K., Alqahtani, S.M. & Almansoori, H.A. (2021). A Bibliometric Analysis of Sustainability and Risk Management. Sustainability, 13, 6, 3277. DOI:10.3390/su13063277
  48. Obaid, A.A., Ali, K.A., Abiye, T.A. & Adam, E. M. (2021). Assessing the utility of using current generation high-resolution satellites (Sentinel 2 and Landsat 8) to monitor large water supply dam in South Africa. Remote Sensing Applications: Society and Environment, 22, 100521. DOI:10.1016/j.rsase.2021.100521
  49. Okafor, C.C., Aigbavboa, C. & Thwala, W.D. (2023). A bibliometric evaluation and critical review of the smart city concept–making a case for social equity. Journal of Science and Technology Policy Management, 14, 3, pp. 487-510. DOI:10.1108/JSTPM-06-2020-0098
  50. Page, M.J., McKenzie, J.E., Bossuyt, P.M., Boutron, I., Hoffmann, T.C., Mulrow, C.D., Shamseer, L., Tetzlaff, J.M., Akl, E.A. & Brennan, S.E. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 372. DOI:10.1186/s13643-021-01626-4
  51. Paraskevi, M., Pau, G.-G., Ada, P., Annette, B.-P. & Tenna, R. (2022). Weed cutting in a large river reduces ecosystem metabolic rates in the case of River Gudenå (Denmark). Journal of Environmental Management, 314, 115014. DOI:10.1016/j.jenvman.2022.115014
  52. Paraskevopoulos, A.L. & Singels, A. (2014). Integrating soil water monitoring technology and weather-based crop modelling to provide improved decision support for sugarcane irrigation management. Computers and Electronics in Agriculture, 105, pp. 44-53. DOI:10.1016/j.compag.2014.04.007
  53. Pham-Duc, B., Nguyen, H., Phan, H. & Tran-Anh, Q. (2023). Trends and applications of google earth engine in remote sensing and earth science research: a bibliometric analysis using scopus database. Earth Science Informatics, 16, 3, pp. 2355-2371. DOI:10.1007/s12145-023-01035-2
  54. Pranckutė, R. (2021). Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World. Publications, 9, 1, 12. DOI:10.3390/publications9010012
  55. Rajaee, T., Khani, S. & Ravansalar, M. (2020). Artificial intelligence-based single and hybrid models for prediction of water quality in rivers: A review. Chemometrics and Intelligent Laboratory Systems, 200, 103978. DOI:10.1016/j.chemolab.2020.103978
  56. Ramadan, E.M., Moussa, A., Magdy, A. & Negm, A. (2024). Integration of hydrodynamic and water quality modeling to mitigate the effects of spill pollution into the Nile River, Egypt. Environmental Science and Pollution Research, 1-19. DOI:10.1007/s11356-024-34216-7
  57. Razguliaev, N., Flanagan, K., Muthanna, T. & Viklander, M. (2024). Urban stormwater quality: A review of methods for continuous field monitoring. Water research, 249, 120929. DOI:10.1016/j.watres.2023.120929
  58. Sagan, V., Peterson, K.T., Maimaitijiang, M., Sidike, P., Sloan, J., Greeling, B.A., Maalouf, S. & Adams, C. (2020). Monitoring inland water quality using remote sensing: potential and limitations of spectral indices, bio-optical simulations, machine learning, and cloud computing. Earth-Science Reviews, 205, 103187. DOI:10.1016/j.earscirev.2020.103187
  59. Sarminingsih, A., Juliani, H., Budihardjo, M.A., Puspita, A.S. & Mirhan, S.A.A. (2024). Water quality monitoring system for temperature, pH, Turbidity, DO, BOD, and COD parameters based on internet of things in the Garang watershed. Ecological Engineering & Environmental Technology, 25. DOI:10.12912/27197050/174412
  60. Shakak, N.B.I. (2022). Simulation of Environmental Pollution Using Advance Technology and Modeling. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 43, pp. 23-29. DOI:10.5194/isprs-archives-XLIII-B4-2022-23-2022
  61. Singh, S., Bhardwaj, A. & Verma, V.K. (2020). Remote sensing and GIS based analysis of temporal land use/land cover and water quality changes in Harike wetland ecosystem, Punjab, India. Journal of Environmental Management, 262, 110355. DOI:10.1016/j.jenvman.2020.110355
  62. Sun, Q., Yan, Z., Wang, J., Chen, J.-A., Li, X., Shi, W., Liu, J. & Li, S.-L. (2024). Evaluating impacts of climate and management on reservoir water quality using environmental fluid dynamics code. Science of the Total Environment, 947, 174608. DOI:10.1016/j.scitotenv.2024.174608
  63. Syeed, M.M.M., Hossain, M.S., Karim, M.R., Uddin, M.F., Hasan, M. & Khan, R.H. (2023). Surface water quality profiling using the water quality index, pollution index and statistical methods: A critical review. Environmental and Sustainability Indicators, 18, 100247. DOI:10.1016/j.indic.2023.100247
  64. Tanjung, R.H.R., Indrayani, E., Agamawan, L.P.I. & Hamuna, B. (2024). Water quality assessment to determine the trophic state and suitability of Lake Sentani (Indonesia) for various utilisation purposes. Water Cycle, 5, pp. 99-108. DOI:10.1016/j.watcyc.2024.02.006
  65. Taufik & Nuqoba, B. (2019). The geographic information system dashboard prototype of Brantas River, East Java. IOP Conference Series: Earth and Environmental Science, 245, 012052. DOI:10.1088/1755-1315/245/1/012052
  66. Tavakoli, A., Kerachian, R., Nikoo, M.R., Soltani, M. & Estalaki, S.M. (2014). Water and waste load allocation in rivers with emphasis on agricultural return flows: application of fractional factorial analysis. Environmental Monitoring and Assessment, 186, pp. 5935-5949. DOI:10.1007/s10661-014-3830-6
  67. Tomojiri, D., Takaya, K. & Ise, T. (2022). Temporal trends and spatial distribution of research topics in anthropogenic marine debris study: Topic modelling using latent Dirichlet allocation. Marine Pollution Bulletin, 182, 113917. DOI:10.1016/j.marpolbul.2022.113917
  68. Topp, S.N., Pavelsky, T.M., Jensen, D., Simard, M. & Ross, M.R. (2020). Research trends in the use of remote sensing for inland water quality science: Moving towards multidisciplinary applications. Water, 12, 1, 169. DOI:10.3390/w12010169
  69. Uddin, M.G., Nash, S. & Olbert, A.I. (2021). A review of water quality index models and their use for assessing surface water quality. Ecological Indicators, 122, 107218. DOI:10.1016/j.ecolind.2020.107218
  70. Uddin, M.G., Nash, S., Rahman, A. & Olbert, A.I. (2022). A comprehensive method for improvement of water quality index (WQI) models for coastal water quality assessment. Water research, 219, 118532. DOI:10.1016/j.watres.2022.118532
  71. Vane, C.H., Kim, A.W., Lopes dos Santos, R.A., Gill, J.C., Moss-Hayes, V., Mulu, J.K., Mackie, J.R., Ferreira, A.M.P.J., Chenery, S.R. & Olaka, L.A. (2022). Impact of organic pollutants from urban slum informal settlements on sustainable development goals and river sediment quality, Nairobi, Kenya, Africa. Applied Geochemistry, 146, 105468. DOI:10.1016/j.apgeochem.2022.105468
  72. Vélez-Nicolás, M., García-López, S., Barbero, L., Ruiz-Ortiz, V. & Sánchez-Bellón, Á. (2021). Applications of Unmanned Aerial Systems (UASs) in Hydrology: A Review. Remote Sensing, 13, 7. DOI:10.3390/rs13071359
  73. Wahyuningrum, I.F.S., Humaira, N.G., Budihardjo, M.A., Arumdani, I.S., Puspita, A.S., Annisa, A.N., Sari, A.M. & Djajadikerta, H.G. (2023). Environmental sustainability disclosure in Asian countries: Bibliometric and content analysis. Journal of Cleaner Production, 411, 137195. DOI:10.1016/j.jclepro.2023.137195
  74. Webber, J.L., Fletcher, T., Farmani, R., Butler, D. & Melville-Shreeve, P. (2022). Moving to the future of smart stormwater management: A review and framework for terminology, research, and future perspectives. Water research, 218, 118409. DOI:10.1016/j.watres.2022.118409
  75. Wibowo, Y.G., Ramadan, B.S., Taher, T. & Khairurrijal, K. (2024). Advancements of nanotechnology and nanomaterials in environmental and human protection for combatting the covid-19 during and post-pandemic era: a comprehensive scientific review. Biomedical Materials & Devices, 2, 1, pp. 34-57. DOI:10.1007/s44174-023-00086-9
  76. Yao, J., Guo, X., Wang, L., & Jiang, H. (2022). Understanding Green Consumption: A Literature Review Based on Factor Analysis and Bibliometric Method. Sustainability, 14, 14, 8324. DOI:10.3390/su14148324
  77. Ye, X., Zhang, B., Lee, K., Storesund, R., Song, X., Kang, Q., Li, P. & Chen, B. (2024). A multi-criteria simulation-optimization coupling approach for effective emergency response in marine oil spill accidents. Journal of Hazardous Materials, 469, 133832. DOI:10.1016/j.jhazmat.2024.133832
  78. Yuan, L., Sinshaw, T. & Forshay, K.J. (2020). Review of Watershed-Scale Water Quality and Nonpoint Source Pollution Models. Geosciences, 10, 1, 25. DOI:10.3390/geosciences10010025
  79. Zabłocki, S., Murat-Błażejewska, S., Trzeciak, J.A. & Błażejewski, R. (2022). High-resolution mapping to assess risk of groundwater pollution by nitrates from agricultural activities in Wielkopolska Province, Poland. Archives of Environmental Protection, 48, 1, pp. 41-57. DOI:10.24425/aep.2022.140544
  80. Zhang, F., Chen, Y., Wang, W., Jim, C.Y., Zhang, Z., Tan, M.L., Liu, C., Chan, N.W., Wang, D., Wang, Z. & Rahman, H.A. (2022). Impact of land-use/land-cover and landscape pattern on seasonal in-stream water quality in small watersheds. Journal of Cleaner Production, 357, 131907. DOI:10.1016/j.jclepro.2022.131907
  81. Zheng, C., Yuan, J., Zhu, L., Zhang, Y. & Shao, Q. (2020). From digital to sustainable: A scientometric review of smart city literature between 1990 and 2019. Journal of Cleaner Production, 258, 120689. DOI:10.1016/j.jclepro.2020.120689
  82. Zulkifli, C.Z., Sulaiman, S., Ibrahim, A.B., Soon, C.F., Harun, N.H., Hairom, N.H.H., Setiawan, M.I. & Chiang, H.H. (2022). Smart Platform for Water Quality Monitoring System using Embedded Sensor with GSM Technology. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 95, 1, pp. 54-63. DOI:10.37934/arfmts.95.1.5463
Go to article

Authors and Affiliations

Syafriadi Syafriadi
1
Anik Sarminingsih
1
Henny Juliani
2
Mochamad Arief Budihardjo
1
Muhammad Thariq Sani
1
Hessy Rahma Wati
3

  1. Department of Environmental Engineering, Faculty of Engineering, Universitas Diponegoro Jl. Prof. H. Sudarto, SH Tembalang, Semarang, Indonesia
  2. Faculty of Law, Diponegoro University, Semarang, Indonesia
  3. Environmental Sustainability Research Group, Departement of Environmental Engineering, Faculty of Engineering, Diponegoro University, Semarang, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

The multidisciplinary journal Polish Polar Research is bibliometrically analysed as a medium of international scientific communication in light of current citation data from SCI Ex 1996 -2002. Despite its world-wide distribution and distinctive visibility in the polar society, the journal 's two-years impact factor is invariably not very high (below 0.35) because the cited papers are mostly from the 1980s. The increasing participation of foreign (co)authors in the Polish quarterly, paired with the slowly growing number of citing articles in SCI Ex are already promising steps to the immediate information transfer and subsequently improved brief-term journal impact. Citation links with polar investigators from Germany,and also from Great Britain, Spain and the USA are clearly manifested, especially in fields of marine Antarctic ecology and biology. Even if Polish Polar Research may successfully compete with several low-rated journals from different countries indexed in SCI Ex in related categories, its continuing internationalization is urgently required.

Go to article

Authors and Affiliations

Grzegorz Racki
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this article is to determine what can we learn about the changing demographics of scientific personnel around the world and over time using available global bibliometric data sources. We wanted to see how useful global data could be for analyzing the scientific workforce. We tested how the demographic transformation of the global scientific profession can be measured using new data sources, thus transcending the traditional approach in which national statistics from national statistical offices are aggregated to a higher level, as in the case of the scientific workforce databases produced by the OECD, UNESCO and the European Union (Eurostat).
Go to article

Authors and Affiliations

Marek Kwiek
1
ORCID: ORCID
Łukasz Szymula
1
ORCID: ORCID

  1. Centrum Studiów nad Polityką Publiczną Uniwersytetu im. Adama Mickiewicza w Poznaniu

This page uses 'cookies'. Learn more