Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This study aimed to evaluate the impact of betaine (Bet) and protected calcium butyrate (PCB) supplementation individually and together on the performance, carcass traits, blood biochemistry, and meat quality of growing Japanese quails ( Coturnix coturnix Japonica) from 1 to 42 days old. 144 one-day-old unsexed Japanese quails were randomly assigned to four dietary treatments with six replicates each. All birds were fed a maize-soybean meal diet for 42 days. The control group received no feed additives, while the treatment groups received 1.2 g/kg Bet, 1.0 g/kg PCB, or a combination of both in their diets. The results indicated that Bet and PCB supplementation individually and together did not differ performance, relative weights of heart, gizzard, proventriculus, bursa of Fabricius and pancreas, water holding capacity (WHC), cooking loss (CL), blood biochemical values except for glucose and triglyceride. Bet supplementation significantly increased relative liver weights, while PCB supplementation decreased glucose levels in serum. Moreover, carcass yield was increased and triglyceride value in blood serum, malondialdehyde (MDA), and the pH levels of breast meats both on the 1st and 30st day of post-mortem were decreased in all treatment groups. Therefore, based on these results, the combination of betaine and butyrate improves both carcass yield and meat quality in growing Japanese quails. More research is needed to determine the impact of betaine and butyrate on the structure of amino acids in meat, antioxidant enzyme activity, and the immune system in poultry.
Go to article

Bibliography


  1. Abd El‐Wahab A, Mahmoud RE, Ahmed MF, Salama MF (2019) Effect of dietary supplementation of calcium butyrate on growth performance, carcass traits, intestinal health and pro‐inflammatory cytokines in Japanese quails. Anim Physiol Anim Nutr 103: 1768-1775.
  2. Abudabos AM, Suliman GM, Al-Owaimer AN, Sulaiman AR, Alharthi AS (2021) Effects of nano emulsified vegetable oil and betaine on growth traits and meat characteristics of broiler chickens reared under cyclic heat stress. Animals 11:1911.
  3. Al-Abdullatif AA, Al-Sagan AA, Hussein EO, Saadeldin IM, Suliman GM, Azzam MM, Al-Mufarrej SI, Alhotan RA (2021) Betaine could help ameliorate transport associated water deprivation stress in broilers by reducing the expression of stress-related transcripts and modulating water channel activity. Ital J Anim Sci 20:14-25.
  4. Al-Sagan AA, Al-Yemni AH, Abudabos AM, Al-Abdullatif AA, Hussein EO (2021) Effect of different dietary betaine fortifications on performance, carcass traits, meat quality, blood biochemistry, and hematology of broilers exposed to various temperature patterns. Animals 11: 1555.
  5. Carpenter KJ, Clegg KM (1956) The metabolizable energy of poultry feeding stuffs in relation to their chemical composition. J Sci Food Agric 7: 45-51.
  6. Chamba F, Puyalto M, Ortiz A, Torrealba H, Mallo JJ, Riboty R (2014) Effect of partially protected sodium butyrate on performance, digestive organs, intestinal villi and E. coli development in broilers chickens. Int J Poult Sci 13: 390-396.
  7. Chen R, Yang M, Song YD, Wang RX, Wen C, Liu Q, Zhou YM, Zhuang S (2022) Effect of anhydrous betaine and hydrochloride betaine on growth performance, meat quality, postmortem glycolysis, and antioxidant capacity of broilers. Poult Sci 101: 101687.
  8. Czerwiński J, Højberg O, Smulikowska S, Engberg RM, Mieczkowska A (2012) Effects of sodium butyrate and salinomycin upon intestinal microbiota, mucosal morphology and performance of broiler chickens. Arch Anim Nutr 66: 102-116.
  9. Dawood MA, Eweedah NM, Elbialy ZI, Abdelhamid AI (2020) Dietary sodium butyrate ameliorated the blood stress biomarkers, heat shock proteins, and immune response of Nile tilapia (Oreochromis niloticus) exposed to heat stress. J Therm Biol 88: 102500.
  10. Deepa K, Purushothaman MR, Vasanthakumar P, Sivakumar K (2017) Serum biochemical parameters and meat quality influenced due to supplementation of sodium butyrate in broiler chicken. Int J Livest Res 7: 108-116.
  11. Egbuniwe IC, Uchendu CN, Obidike IR (2021) Ameliorative effects of betaine and ascorbic acid on endocrine and erythrocytic parameters of sexually-maturing female Japanese quails during the dry season. J Therm Biol 96: 102812.
  12. El-Bahr SM, Shousha S, Khattab W, Shehab A, El-Garhy O, El-Garhy H, Mohamed S, Ahmed-Farid O, Hamad A, Sabike I (2021) Impact of dietary betaine and metabolizable energy levels on profiles of proteins and lipids, bioenergetics, peroxidation and quality of meat in Japanese quail. Animals 11: 117.
  13. Elnesr SS, Ropy A, Abdel-Razik AH (2019) Effect of dietary sodium butyrate supplementation on growth, blood biochemistry, haematology and histomorphometry of intestine and immune organs of Japanese quail. Animal 13: 1234-1244.
  14. Esteve-Garcia E, Mack S (2000) The effect of dl-methionine and betaine on growth performance and carcass characteristics in broilers. Anim Feed Sci Technol 87: 85-93.
  15. Gümüş E, Küçükersan S, Bayraktaroğlu AG, Sel T (2021) Effect of dietary supplementation of some natural antioxidants and coated calcium butyrate on carcass traits, some serum biochemical parameters, lipid peroxidation in meat and intestinal histomorphology in broilers. Ankara Univ Vet Fak Derg 68: 237-244.
  16. Jiang Y, Zhang W, Gao F, Zhou G (2015) Micro-encapsulated sodium butyrate attenuates oxidative stress induced by corticosterone exposure and modulates apoptosis in intestinal mucosa of broiler chickens. Anim Prod Sci 55: 587.
  17. Leeson S, Namkung H, Antongiovanni M, Lee EH (2005) Effect of butyric acid on the performance and carcass yield of broiler chickens. Poult Sci 84: 1418-1422.
  18. Liu J, Song R, Su S, Qi N, Li Q, Xie Z, Yu S (2022) Betaine promotes fat accumulation and reduces injury in Landes Goose hepatocytes by regulating multiple lipid metabolism pathways. Animals 12: 1530.
  19. Mátis G, Petrilla J, Kulcsár A, van den Bighelaar H, Boomsma B, Neogrády Z, Fébel H (2019) Effects of dietary butyrate supplementation and crude protein level on carcass traits and meat composition of broiler chickens. Arch Anim Breed 62: 527-536.
  20. National Research Council (1994) Nutrient Requirements of Poultry, 9th ed., The National Academies Press, Washington DC.
  21. Pascual A, Trocino A, Birolo M, Cardazzo B, Bordignon F, Balarin C, Carraro L, Xiccato G (2020) Dietary supplementation with sodium butyrate: growth, gut response at different ages, and meat quality of female and male broiler chickens. Ital J Anim Sci 19: 1134-1145.
  22. Pillai PB, Fanatico AC, Beers KW, Blair ME, Emmert JL (2006) Homocysteine remethylation in young broilers fed varying levels of methionine, choline, and betaine. Poult Sci 85: 90-95.
  23. Rama Rao SV, Raju MV, Panda AK, Saharia P, Sunder GS (2011) Effect of supplementing betaine on performance, carcass traits and immune responses in broiler chicken fed diets containing different concentrations of methionine. Asian-Australas J Anim Sci 24: 662-669.
  24. Rice EM, Aragona KM, Moreland SC, Erickson PS (2019) Supplementation of sodium butyrate to postweaned heifer diets: Effects on growth performance, nutrient digestibility, and health. J Dairy Sci 102: 3121-3130.
  25. Shihab MA, Olgun O, Abdulqader AF (2020) The effect of supplementation of sodium butyrate to diets with different levels of metabolic energy contents on performance, carcass and some blood parameters in growing quails. Journal of Bahri Dagdas Animal Research 9: 79-87.
  26. Su SY, Dodson MV, Li XB, Li QF, Wang HW, Xie Z (2009) The effects of dietary betaine supplementation on fatty liver performance, serum parameters, histological changes, methylation status and the mRNA expression level of Spot14α in Landes goose fatty liver. Comp Biochem Physiol A Mol Integr Physiol 154: 308-314.
  27. Uzunoğlu K, Yalçın S (2019) Effects of dietary supplementation of betaine and sepiolite on performance and intestinal health in broilers. Ankara Univ Vet Fak Derg 66: 221-229.
  28. Yang M, Chen R, Song YD, Zhou YM, Liu Q, Zhuang S (2022a) Effects of dietary betaine supplementation on growth performance, meat quality, muscle fatty acid composition and antioxidant ability in slow-growing broiler chickens. Br Poult Sci 63: 351-359.
  29. Yang Q, Chen B, Robinson K, Belem T, Lyu W, Deng Z, Ramanathan R, Zhang G (2022b) Butyrate in combination with forskolin alleviates necrotic enteritis, increases feed efficiency, and improves carcass composition of broilers. J Animal Sci Biotechnol 13: 3.
  30. Yin F Yu H, Lepp D, Shi X, Yang X, Hu J, Leeson S, Yang C, Nie S, Hou Y, Gong J (2016) Transcriptome analysis reveals regulation of gene expression for lipid catabolism in young broilers by butyrate glycerides. Plos One 11: e0160751.
  31. Zeb A, Ullah F (2016) A simple spectrophotometric method for the determination of thiobarbituric acid reactive substances in fried fast foods. J Anal Chem 2016: 9412767.
  32. Zhang W, Jiang Y, Zhu QM, Gao F, Dai S, Chen JC, Zhou G (2011a) Sodium butyrate maintains growth performance by regulating the immune response in broiler chickens. Br Poult Sci 52: 292-301.
  33. Zhang W, Gao F, Zhu QM, Zhou G, Jiang Y, Dai S (2011b) Dietary sodium butyrate alleviates the oxidative stress induced by corticosterone exposure and improves meat quality in broiler chickens. Poult Sci 90: 2592-2599.
Go to article

Authors and Affiliations

E. Gümüş
1
B. Sevim
2
O. Olgun
3
S. Küçükersan
4

  1. Department of Veterinary, Eskil Vocational School, Aksaray University, Şehit Recep Bozdağ Cad., 68800 Eskil, Aksaray, Turkey
  2. Department of Food Processing, Technical Sciences Vocational School, Aksaray University, Hacılar Harmanı Mah, 12. Bulvar No:2, Merkez, 68100 Aksaray, Turkey
  3. Department of Animal Science, Faculty of Agriculture, Selçuk University, Alaeaddin Keykubat Yerleşkesi, 42130, Selcuklu, Konya, Turkey
  4. Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Ankara University, Zübeyde Hanım Mahallesi Şehit Ömer Halisdemir Bulvarı No: 9/C, 06070, Altındağ, Ankara, Turkey
Download PDF Download RIS Download Bibtex

Abstract

An organobentonite modified with an amphoteric surfactant, tallow dihydroxyethyl betaine (TDHEB), was used as an adsorbent to simultaneously remove Cu(II) and phenol from wastewater. The characteristic of the organobentonite (named TDHEB-bentonite) was analyzed by X-ray diffraction, Fourier-transform infrared spectra and nitrogen adsorption-desorption isotherm. Batch tests were conducted to evaluate the adsorption capacities of TDHEB-bentonite for the two contaminants. Experiment results demonstrated that the adsorption of both contaminants is highly pH-dependent under acidic conditions. TDHEB-bentonite had about 2.0 and 5.0 times higher adsorption capacity toward Cu(II) and phenol, respectively, relative to the corresponding raw Na-bentonite. Adsorption isotherm data showed that the adsorption processes of both contaminants were well described by Freundlich model. Kinetic experiment demonstrated that both contaminants adsorption processes correlated well with pseudo-second-order model. Cu(II) had a negative impact on phenol adsorption, but not vice versa. Cu(II) was removed mainly through chelating with the organic groups (-CH2CH2OH and -COO-) of TDHEB. Otherwise, partition into the organic phase derived from the adsorbed surfactant was the primarily mechanism for phenol removal. Overall, TDHEB-bentonite was a promising adsorbent for removing Cu(II) and phenol simultaneously from wastewater.
Go to article

Bibliography

  1. Andronico, M. & Bajda, T. (2019). Modification of Bentonite with Cationic and Nonionic Surfactants: Structural and Textural Features. Materials, 12(22), 3772. DOI:10.3390/ma12223772
  2. Banat, F. A., Al-Bashir, B., Al-Asheh, S. & Hayajneh, O. (2000). Adsorption of phenol by bentonite. Environmental Pollution, 107(3), pp. 391-398. DOI:10.1016/S0269-7491(99)00173-6
  3. Bhattacharyya, K. G. & Gupta, S. S. (2008). Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Advances in Colloid and Interface Science, 140(2), pp. 114-131. DOI:10.1016/j.cis.2007.12.008
  4. Cao, L., Li, Z., Xiang, S., Huang, Z., Ruan, R. & Liu, Y. (2019). Preparation and characteristics of bentonite–zeolite adsorbent and its application in swine wastewater. Bioresource Technology, 284, pp. 448-455. DOI:10.1016/j.biortech.2019.03.043
  5. Chen, H., Zhou, W., Zhu, K., Zhan, H. & Jiang, M. (2004). Sorption of ionizable organic compounds on HDTMA-modified loess soil. Science of The Total Environment, 326(1), pp. 217-223. DOI:10.1016/j.scitotenv.2003.12.011
  6. Chen, Y., Zhang, X., Wang, L., Cheng, X. & Shang, Q. (2020). Rapid removal of phenol/antibiotics in water by Fe-(8-hydroxyquinoline-7-carboxylic)/TiO2 flower composite: Adsorption combined with photocatalysis. Chemical Engineering Journal, 402, 126260. DOI:10.1016/j.cej.2020.126260
  7. Chu, Y., Khan, M. A., Xia, M., Lei, W., Wang, F., Zhu, S. & Yan, X. (2020). Synthesis and micro-mechanistic studies of histidine modified montmorillonite for lead(II) and copper(II) adsorption from wastewater. Chemical Engineering Research and Design, 157, pp. 142-152. DOI:10.1016/j.cherd.2020.02.020
  8. Díaz-Nava, M. C., Olguín, M. T. & Solache-Ríos, M. (2012). Adsorption of phenol onto surfactants modified bentonite. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 74(1), 67-75. DOI:10.1007/s10847-011-0084-6
  9. Fan, H., Zhou, L., Jiang, X., Huang, Q. & Lang, W. (2014). Adsorption of Cu2+ and methylene blue on dodecyl sulfobetaine surfactant-modified montmorillonite. Applied Clay Science, 95, pp. 150-158. DOI:10.1016/j.clay.2014.04.001
  10. Freundlich, H. (1906). Over the adsorption in solution. The Journal of Physical Chemistry A, 57(385471), pp. 1100-1107. DOI:10.1515/zpch-1907-5723
  11. Griffin, R. A. & Shimp, N. F. (1976). Effect of pH on exchange-adsorption or precipitation of lead from landfill leachates by clay minerals. Environmental science & technology, 10(13), pp. 1256-1261. DOI:10.1021/es60123a003
  12. He, Y., Chen, Y., Zhang, K., Ye, W. & Wu, D. (2019). Removal of chromium and strontium from aqueous solutions by adsorption on laterite. Archives of Environmental Protection, 45(3), pp. 11-20. DOI:10.24425/aep.2019.128636
  13. Kong, Y., Wang, L., Ge, Y., Su, H. & Li, Z. (2019). Lignin xanthate resin–bentonite clay composite as a highly effective and low-cost adsorbent for the removal of doxycycline hydrochloride antibiotic and mercury ions in water. Journal of Hazardous Materials, 368, pp. 33-41. DOI:10.1016/j.jhazmat.2019.01.026
  14. Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical society, 40(9), pp. 1361-1403. DOI:10.1021/ja02242a004
  15. Lee, C., Lee, S., Park, J., Park, C., Lee, S. J., Kim, S., An, B., Yun, S., Lee, S. & Choi, J. (2017). Removal of copper, nickel and chromium mixtures from metal plating wastewater by adsorption with modified carbon foam. Chemosphere, 166, pp. 203-211. DOI:10.1016/j.chemosphere.2016.09.093
  16. Lin, S. & Juang, R. (2002). Heavy metal removal from water by sorption using surfactant-modified montmorillonite. Journal of Hazardous Materials, 92(3), pp. 315-326. DOI:10.1016/S0304-3894(02)00026-2
  17. Liu, C., Wu, P., Zhu, Y. & Tran, L. (2016). Simultaneous adsorption of Cd2+ and BPA on amphoteric surfactant activated montmorillonite. Chemosphere, 144, pp. 1026-1032. DOI:10.1016/j.chemosphere.2015.09.063
  18. Long, H., Wu, P. & Zhu, N. (2013). Evaluation of Cs+ removal from aqueous solution by adsorption on ethylamine-modified montmorillonite. Chemical Engineering Journal, 225, pp. 237-244. DOI:10.1016/j.cej.2013.03.088
  19. Ma, J. & Zhu, L. (2006). Simultaneous sorption of phosphate and phenanthrene to inorgano–organo-bentonite from water. Journal of Hazardous Materials, 136(3), pp. 982-988. DOI:10.1016/j.jhazmat.2006.01.046
  20. Ma, J. & Zhu, L. (2007). Removal of phenols from water accompanied with synthesis of organobentonite in one-step process. Chemosphere, 68(10), pp. 1883-1888. DOI:10.1016/j.chemosphere.2007.03.002
  21. Ma, L., Chen, Q., Zhu, J., Xi, Y., He, H., Zhu, R., Tao, Q. & Ayoko, G. A. (2016). Adsorption of phenol and Cu(II) onto cationic and zwitterionic surfactant modified montmorillonite in single and binary systems. Chemical Engineering Journal, 283, pp. 880-888. DOI:10.1016/j.cej.2015.08.009
  22. Matthes, W., Madsen, F. T. & Kahr, G. (1999). Sorption of heavy-metal cations by Al and Zr-hydroxy-intercalated and pillared bentonite. Clays and Clay Minerals, 47(5), pp. 617-629. DOI:10.1346/CCMN.1999.0470508
  23. Meng, Z., Zhang, Y. & Zhang, Z. (2008). Simultaneous adsorption of phenol and cadmium on amphoteric modified soil. Journal of Hazardous Materials, 159(2), pp. 492-498. DOI:10.1016/j.jhazmat.2008.02.045
  24. Nourmoradi, H., Nikaeen, M. & Khiadani Hajian, M. (2012). Removal of benzene, toluene, ethylbenzene and xylene (BTEX) from aqueous solutions by montmorillonite modified with nonionic surfactant: Equilibrium, kinetic and thermodynamic study. Chemical Engineering Journal, 191, pp. 341-348. DOI:10.1016/j.cej.2012.03.029
  25. Pal, A., Jayamani, J. & Prasad, R. (2014). An urgent need to reassess the safe levels of copper in the drinking water: Lessons from studies on healthy animals harboring no genetic deficits. NeuroToxicology, 44, pp. 58-60. DOI:10.1016/j.neuro.2014.05.005
  26. Park, Y., Ayoko, G. A., Horváth, E., Kurdi, R., Kristof, J. & Frost, R. L. (2013). Structural characterisation and environmental application of organoclays for the removal of phenolic compounds. Journal of Colloid and Interface Science, 393, pp. 319-334. DOI:10.1016/j.jcis.2012.10.067
  27. Qu, Y., Qin, L., Liu, X. & Yang, Y. (2020). Reasonable design and sifting of microporous carbon nanosphere-based surface molecularly imprinted polymer for selective removal of phenol from wastewater. Chemosphere, 251, 126376. DOI:10.1016/j.chemosphere.2020.126376
  28. Redlich, O. & Peterson, D. L. (1959). A useful adsorption isotherm. Journal of physical chemistry, 63(6), 1024. DOI:10.1021/j150576a611
  29. Ren, S., Meng, Z., Sun, X., Lu, H., Zhang, M., Lahori, A. H. & Bu, S. (2020). Comparison of Cd2+ adsorption onto amphoteric, amphoteric-cationic and amphoteric-anionic modified magnetic bentonites. Chemosphere, 239, 124840. DOI:10.1016/j.chemosphere.2019.124840
  30. Senturk, H. B., Ozdes, D., Gundogdu, A., Duran, C. & Soylak, M. (2009). Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: Equilibrium, kinetic and thermodynamic study. Journal of Hazardous Materials, 172(1), pp. 353-362. DOI:10.1016/j.jhazmat.2009.07.019
  31. Taffarel, S. R. & Rubio, J. (2010). Adsorption of sodium dodecyl benzene sulfonate from aqueous solution using a modified natural zeolite with CTAB. Minerals Engineering, 23(10), pp. 771-779. DOI:10.1016/j.mineng.2010.05.018
  32. Tri, N. L. M., Thang, P. Q., Van Tan, L., Huong, P. T., Kim, J., Viet, N. M., Phuong, N. M. & Al Tahtamouni, T. M. (2020). Removal of phenolic compounds from wastewaters by using synthesized Fe-nano zeolite. Journal of Water Process Engineering, 33, 101070. DOI:10.1016/j.jwpe.2019.101070
  33. Veli, S. & Alyüz, B. (2007). Adsorption of copper and zinc from aqueous solutions by using natural clay. Journal of Hazardous Materials, 149(1), pp. 226-233. DOI:10.1016/j.jhazmat.2007.04.109
  34. Wang, G., Wang, X., Zhang, S., Ma, S., Wang, Y. & Qiu, J. (2020). Adsorption of heavy metal and organic pollutant by organo-montmorillonites in binary-component system. Journal of Porous Materials, 27(5), pp. 1515-1522. DOI:10.1007/s10934-020-00927-8
  35. Wang, G., Zhang, S., Hua, Y., Su, X., Ma, S., Wang, J., Tao, Q., Wang, Y. & Komarneni, S. (2017). Phenol and/or Zn2+ adsorption by single- or dual-cation organomontmorillonites. Applied Clay Science, 140, pp. 1-9. DOI:10.1016/j.clay.2017.01.023
  36. Yan, L., Shan, X., Wen, B. & Zhang, S. (2007). Effect of lead on the sorption of phenol onto montmorillonites and organo-montmorillonites. Journal of Colloid and Interface Science, 308(1), pp. 11-19. DOI:10.1016/j.jcis.2006.12.027
  37. Yang, G., Tang, L., Zeng, G., Cai, Y., Tang, J., Pang, Y., Zhou, Y., Liu, Y., Wang, J., Zhang, S. & Xiong, W. (2015). Simultaneous removal of lead and phenol contamination from water by nitrogen-functionalized magnetic ordered mesoporous carbon. Chemical Engineering Journal, 259, pp. 854-864. DOI:10.1016/j.cej.2014.08.081
  38. Yoo, J., Choi, J., Lee, T. & Park, J. (2004). Organobentonite for sorption and degradation of phenol in the presence of heavy metals. Water, Air, and Soil Pollution, 154(1), pp. 225-237. DOI:10.1023/B:WATE.0000022970.21712.64
  39. Yu, K., Xu, J., Jiang, X., Liu, C., McCall, W. & Lu, J. (2017). Stabilization of heavy metals in soil using two organo-bentonites. Chemosphere, 184, pp.884-891. DOI:10.1016/j.chemosphere.2017.06.040
  40. Zendelska, A., Golomeova, M., Golomeov, B. & Krstev, B. (2018). Removal of lead ions from acid aqueous solutions and acid mine drainage using zeolite bearing tuff. Archives of Environmental Protection, 44(1), pp. 87-96. DOI:10.24425/118185
  41. Zhu, R., Chen, Q., Zhou, Q., Xi, Y., Zhu, J. & He, H. (2016). Adsorbents based on montmorillonite for contaminant removal from water: A review. Applied Clay Science, 123, pp. 239-258. DOI:10.1016/j.clay.2015.12.024
  42. Andronico, M. & Bajda, T. (2019). Modification of Bentonite with Cationic and Nonionic Surfactants: Structural and Textural Features. Materials, 12(22), 3772. DOI:10.3390/ma12223772
  43. Banat, F. A., Al-Bashir, B., Al-Asheh, S. & Hayajneh, O. (2000). Adsorption of phenol by bentonite. Environmental Pollution, 107(3), pp. 391-398. DOI:10.1016/S0269-7491(99)00173-6
  44. Bhattacharyya, K. G. & Gupta, S. S. (2008). Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Advances in Colloid and Interface Science, 140(2), pp. 114-131. DOI:10.1016/j.cis.2007.12.008
  45. Cao, L., Li, Z., Xiang, S., Huang, Z., Ruan, R. & Liu, Y. (2019). Preparation and characteristics of bentonite–zeolite adsorbent and its application in swine wastewater. Bioresource Technology, 284, pp. 448-455. DOI:10.1016/j.biortech.2019.03.043
  46. Chen, H., Zhou, W., Zhu, K., Zhan, H. & Jiang, M. (2004). Sorption of ionizable organic compounds on HDTMA-modified loess soil. Science of The Total Environment, 326(1), pp. 217-223. DOI:10.1016/j.scitotenv.2003.12.011
  47. Chen, Y., Zhang, X., Wang, L., Cheng, X. & Shang, Q. (2020). Rapid removal of phenol/antibiotics in water by Fe-(8-hydroxyquinoline-7-carboxylic)/TiO2 flower composite: Adsorption combined with photocatalysis. Chemical Engineering Journal, 402, 126260. DOI:10.1016/j.cej.2020.126260
  48. Chu, Y., Khan, M. A., Xia, M., Lei, W., Wang, F., Zhu, S. & Yan, X. (2020). Synthesis and micro-mechanistic studies of histidine modified montmorillonite for lead(II) and copper(II) adsorption from wastewater. Chemical Engineering Research and Design, 157, pp. 142-152. DOI:10.1016/j.cherd.2020.02.020
  49. Díaz-Nava, M. C., Olguín, M. T. & Solache-Ríos, M. (2012). Adsorption of phenol onto surfactants modified bentonite. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 74(1), 67-75. DOI:10.1007/s10847-011-0084-6
  50. Fan, H., Zhou, L., Jiang, X., Huang, Q. & Lang, W. (2014). Adsorption of Cu2+ and methylene blue on dodecyl sulfobetaine surfactant-modified montmorillonite. Applied Clay Science, 95, pp. 150-158. DOI:10.1016/j.clay.2014.04.001
  51. Freundlich, H. (1906). Over the adsorption in solution. The Journal of Physical Chemistry A, 57(385471), pp. 1100-1107. DOI:10.1515/zpch-1907-5723
  52. Griffin, R. A. & Shimp, N. F. (1976). Effect of pH on exchange-adsorption or precipitation of lead from landfill leachates by clay minerals. Environmental science & technology, 10(13), pp. 1256-1261. DOI:10.1021/es60123a003
  53. He, Y., Chen, Y., Zhang, K., Ye, W. & Wu, D. (2019). Removal of chromium and strontium from aqueous solutions by adsorption on laterite. Archives of Environmental Protection, 45(3), pp. 11-20. DOI:10.24425/aep.2019.128636
  54. Kong, Y., Wang, L., Ge, Y., Su, H. & Li, Z. (2019). Lignin xanthate resin–bentonite clay composite as a highly effective and low-cost adsorbent for the removal of doxycycline hydrochloride antibiotic and mercury ions in water. Journal of Hazardous Materials, 368, pp. 33-41. DOI:10.1016/j.jhazmat.2019.01.026
  55. Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical society, 40(9), pp. 1361-1403. DOI:10.1021/ja02242a004
  56. Lee, C., Lee, S., Park, J., Park, C., Lee, S. J., Kim, S., An, B., Yun, S., Lee, S. & Choi, J. (2017). Removal of copper, nickel and chromium mixtures from metal plating wastewater by adsorption with modified carbon foam. Chemosphere, 166, pp. 203-211. DOI:10.1016/j.chemosphere.2016.09.093
  57. Lin, S. & Juang, R. (2002). Heavy metal removal from water by sorption using surfactant-modified montmorillonite. Journal of Hazardous Materials, 92(3), pp. 315-326. DOI:10.1016/S0304-3894(02)00026-2
  58. Liu, C., Wu, P., Zhu, Y. & Tran, L. (2016). Simultaneous adsorption of Cd2+ and BPA on amphoteric surfactant activated montmorillonite. Chemosphere, 144, pp. 1026-1032. DOI:10.1016/j.chemosphere.2015.09.063
  59. Long, H., Wu, P. & Zhu, N. (2013). Evaluation of Cs+ removal from aqueous solution by adsorption on ethylamine-modified montmorillonite. Chemical Engineering Journal, 225, pp. 237-244. DOI:10.1016/j.cej.2013.03.088
  60. Ma, J. & Zhu, L. (2006). Simultaneous sorption of phosphate and phenanthrene to inorgano–organo-bentonite from water. Journal of Hazardous Materials, 136(3), pp. 982-988. DOI:10.1016/j.jhazmat.2006.01.046
  61. Ma, J. & Zhu, L. (2007). Removal of phenols from water accompanied with synthesis of organobentonite in one-step process. Chemosphere, 68(10), pp. 1883-1888. DOI:10.1016/j.chemosphere.2007.03.002
  62. Ma, L., Chen, Q., Zhu, J., Xi, Y., He, H., Zhu, R., Tao, Q. & Ayoko, G. A. (2016). Adsorption of phenol and Cu(II) onto cationic and zwitterionic surfactant modified montmorillonite in single and binary systems. Chemical Engineering Journal, 283, pp. 880-888. DOI:10.1016/j.cej.2015.08.009
  63. Matthes, W., Madsen, F. T. & Kahr, G. (1999). Sorption of heavy-metal cations by Al and Zr-hydroxy-intercalated and pillared bentonite. Clays and Clay Minerals, 47(5), pp. 617-629. DOI:10.1346/CCMN.1999.0470508
  64. Meng, Z., Zhang, Y. & Zhang, Z. (2008). Simultaneous adsorption of phenol and cadmium on amphoteric modified soil. Journal of Hazardous Materials, 159(2), pp. 492-498. DOI:10.1016/j.jhazmat.2008.02.045
  65. Nourmoradi, H., Nikaeen, M. & Khiadani Hajian, M. (2012). Removal of benzene, toluene, ethylbenzene and xylene (BTEX) from aqueous solutions by montmorillonite modified with nonionic surfactant: Equilibrium, kinetic and thermodynamic study. Chemical Engineering Journal, 191, pp. 341-348. DOI:10.1016/j.cej.2012.03.029
  66. Pal, A., Jayamani, J. & Prasad, R. (2014). An urgent need to reassess the safe levels of copper in the drinking water: Lessons from studies on healthy animals harboring no genetic deficits. NeuroToxicology, 44, pp. 58-60. DOI:10.1016/j.neuro.2014.05.005
  67. Park, Y., Ayoko, G. A., Horváth, E., Kurdi, R., Kristof, J. & Frost, R. L. (2013). Structural characterisation and environmental application of organoclays for the removal of phenolic compounds. Journal of Colloid and Interface Science, 393, pp. 319-334. DOI:10.1016/j.jcis.2012.10.067
  68. Qu, Y., Qin, L., Liu, X. & Yang, Y. (2020). Reasonable design and sifting of microporous carbon nanosphere-based surface molecularly imprinted polymer for selective removal of phenol from wastewater. Chemosphere, 251, 126376. DOI:10.1016/j.chemosphere.2020.126376
  69. Redlich, O. & Peterson, D. L. (1959). A useful adsorption isotherm. Journal of physical chemistry, 63(6), 1024. DOI:10.1021/j150576a611
  70. Ren, S., Meng, Z., Sun, X., Lu, H., Zhang, M., Lahori, A. H. & Bu, S. (2020). Comparison of Cd2+ adsorption onto amphoteric, amphoteric-cationic and amphoteric-anionic modified magnetic bentonites. Chemosphere, 239, 124840. DOI:10.1016/j.chemosphere.2019.124840
  71. Senturk, H. B., Ozdes, D., Gundogdu, A., Duran, C. & Soylak, M. (2009). Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: Equilibrium, kinetic and thermodynamic study. Journal of Hazardous Materials, 172(1), pp. 353-362. DOI:10.1016/j.jhazmat.2009.07.019
  72. Taffarel, S. R. & Rubio, J. (2010). Adsorption of sodium dodecyl benzene sulfonate from aqueous solution using a modified natural zeolite with CTAB. Minerals Engineering, 23(10), pp. 771-779. DOI:10.1016/j.mineng.2010.05.018
  73. Tri, N. L. M., Thang, P. Q., Van Tan, L., Huong, P. T., Kim, J., Viet, N. M., Phuong, N. M. & Al Tahtamouni, T. M. (2020). Removal of phenolic compounds from wastewaters by using synthesized Fe-nano zeolite. Journal of Water Process Engineering, 33, 101070. DOI:10.1016/j.jwpe.2019.101070
  74. Veli, S. & Alyüz, B. (2007). Adsorption of copper and zinc from aqueous solutions by using natural clay. Journal of Hazardous Materials, 149(1), pp. 226-233. DOI:10.1016/j.jhazmat.2007.04.109
  75. Wang, G., Wang, X., Zhang, S., Ma, S., Wang, Y. & Qiu, J. (2020). Adsorption of heavy metal and organic pollutant by organo-montmorillonites in binary-component system. Journal of Porous Materials, 27(5), pp. 1515-1522. DOI:10.1007/s10934-020-00927-8
  76. Wang, G., Zhang, S., Hua, Y., Su, X., Ma, S., Wang, J., Tao, Q., Wang, Y. & Komarneni, S. (2017). Phenol and/or Zn2+ adsorption by single- or dual-cation organomontmorillonites. Applied Clay Science, 140, pp. 1-9. DOI:10.1016/j.clay.2017.01.023
  77. Yan, L., Shan, X., Wen, B. & Zhang, S. (2007). Effect of lead on the sorption of phenol onto montmorillonites and organo-montmorillonites. Journal of Colloid and Interface Science, 308(1), pp. 11-19. DOI:10.1016/j.jcis.2006.12.027
  78. Yang, G., Tang, L., Zeng, G., Cai, Y., Tang, J., Pang, Y., Zhou, Y., Liu, Y., Wang, J., Zhang, S. & Xiong, W. (2015). Simultaneous removal of lead and phenol contamination from water by nitrogen-functionalized magnetic ordered mesoporous carbon. Chemical Engineering Journal, 259, pp. 854-864. DOI:10.1016/j.cej.2014.08.081
  79. Yoo, J., Choi, J., Lee, T. & Park, J. (2004). Organobentonite for sorption and degradation of phenol in the presence of heavy metals. Water, Air, and Soil Pollution, 154(1), pp. 225-237. DOI:10.1023/B:WATE.0000022970.21712.64
  80. Yu, K., Xu, J., Jiang, X., Liu, C., McCall, W. & Lu, J. (2017). Stabilization of heavy metals in soil using two organo-bentonites. Chemosphere, 184, pp.884-891. DOI:10.1016/j.chemosphere.2017.06.040
  81. Zendelska, A., Golomeova, M., Golomeov, B. & Krstev, B. (2018). Removal of lead ions from acid aqueous solutions and acid mine drainage using zeolite bearing tuff. Archives of Environmental Protection, 44(1), pp. 87-96. DOI:10.24425/118185
  82. Zhu, R., Chen, Q., Zhou, Q., Xi, Y., Zhu, J. & He, H. (2016). Adsorbents based on montmorillonite for contaminant removal from water: A review. Applied Clay Science, 123, pp. 239-258. DOI:10.1016/j.clay.2015.12.024
Go to article

Authors and Affiliations

Xiangyang Hu
1
Bao Wang
2
ORCID: ORCID
Gengsheng Yan
1
Bizhou Ge
2

  1. PowerChina Northwest Engineering Corporation Limited, China
  2. Xi’an University of Architecture and Technology, China
Download PDF Download RIS Download Bibtex

Abstract

Nanotechnology has been widely applied in agriculture, and understanding of the mechanisms of plant interaction with nanoparticles (NPs) as environmental contaminants is important. The aim of this study was to determine the effects of foliar application of cobalt oxide (Co3O4) NPs on some morpho-physiological and biochemical changes of canola (Brassica napus L.) leaves. Seeds were sown in plastic pots and grown under controlled conditions. Fourteen-day-old seedlings were sprayed with different concentrations of Co3O4 NPs (0, 50, 100, 250, 500, 1000, 2000, and 4000 mg L-1) at weekly intervals for 5 weeks. Growth parameters of the shoot (length, fresh and dry weights) were stimulated by low concentrations of Co3O4 NPs (50 and 100 mg L-1) and repressed by higher concentrations. Similar trends were observed in photosynthetic pigment contents. The results indicated that high concentrations of Co3O4 NPs increased lipoxygenase (LOX) activity and the malondialdehyde (MDA), hydrogen peroxide (H2O2), and dehydroascorbate (DHA) contents, but reduced the membrane stability index (MSI), ascorbate (ASC), and glutathione (GSH). Despite the increase of antioxidant capacity (DPPH) and the accumulation of nonenzymatic antioxidants (total flavonoids and flavonols) and osmolytes (proline, glycine betaine (GB) and soluble sugars) at high concentrations of Co3O4 NPs, the growth and photosynthesis were reduced. The defence system activity did not seem to be sufficient to detoxify reactive oxygen species (ROS). Altogether, high concentrations of Co3O4 NPs showed a phytotoxic potential for canola as an oilseed crop.

Go to article

Authors and Affiliations

Malihe Jahani
Ramazan Ali Khavari-Nejad
Homa Mahmoodzadeh
Sara Saadatmand

This page uses 'cookies'. Learn more