Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper deals with the problem of determining the particle size distribution of selected organic soils from the vicinity of Rzeszów (Poland), using a laser diffractometer method, the knowledge of which will allow to determine the degree of differentiation or similarity of the tested organic soils in this aspect. The HELOS Laser Diffractometer manufactured by Sympatec GmbH was used for the tests. For proper analysis, the researches results in the form of graphs were grouped according to the content of organic substances in accordance with the standard classification. The conducted research was primarily aimed at presenting the grain differentiation and particle size distribution in terms of the applied method and comparing the test results of samples of selected, different organic soils, prepared using the same dispersion procedure and carried out in exactly the same test conditions, generated using capabilities of a diffractometer. Summing up, the laser diffractometer method presented in the article, although not fully verified in the case of organic soils, seems to be a the perspective method with capabilities allowing it to be nominated as an exceptionally useful method for the investigations of soft soils, including organic soils.
Go to article

Authors and Affiliations

Grzegorz Straż
1
ORCID: ORCID

  1. Rzeszow University of Technology, Faculty of Civil and Environmental Engineering and Architecture Civil Engineering, al. Powstanców Warszawy 12, 35-959 Rzeszow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The dynamic replacement columns are formed by driving a coarse-grained material into a soft soil by means of repeatable drops of a pounder. The final shapes of the columns are non-cylindrical and depend on the subsoil conditions. This paper presents results of the laboratory study on influence of the thickness of the soft soil on the displacements of the backfill aggregate during the driving process. A test box with one acrylic-glass wall was prepared, in which, over a load-bearing sand layer, a soft soil of various thicknesses (���� = 0.3, 0.4 or 0.5 m) was modelled using a semi-transparent acrylic polymer. The displacements of the backfill gravel particles were tracked by means of a high-speed camera. The material was driven by dropping a 0.2 m high (����) pounder. The results revealed that the distance between the bottom of the first crater and the top of the sand layer played an important role in directing the particles. At ����/���� = 2.5 pear-shaped floating columns were formed as the grains in the side zones were less affected by the pounder drops and their paths deviated from the vertical axis by not more than 50°. In case of ����/���� = 2.0 and 1.5, the column bases reached the bearing layer and the impact energy caused much larger vertical and horizontal displacements of the backfill material in the side zones – the observed largest angles were equal to 64° and even 90°, respectively. Eventually, the final column shapes resembled a non-symmetrical barrel and a truncated cone.
Go to article

Authors and Affiliations

Sławomir Kwiecień
1
ORCID: ORCID
Siergey Ihnatov
1
ORCID: ORCID
Magdalena Kowalska
1
ORCID: ORCID

  1. Silesian University of Technology, Faculty of Civil Engineering, ul. Akademicka 5, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Prediction of soft soil sub-grades settlement has been a big challenge for geotechnical engineers that are responsible for the design of roadbed embankment. The characteristics of low strength, poor permeability, high water contents, and high compressibility are dominant in soft soils, which result in a huge settlement in the case of long-term loading. The settlement prediction in soft soil subgrades of Jiehui Expressway A1, Guangdong, China, is the focus of this study. For this purpose, the necessary data of settlement is collected throughout the project execution. The numerical analysis is conducted by using the Richards model based on Linear Least Squares Iteration (LLS-I) method to calculate and predict the expected settlement. The traditional settlement prediction methods, including the hyperbolic method, exponential curve method, and pearl curve method, are applied on field settlement data of soft soil subgrades of Jiehui Expressway A1. The results show that the Richards model based on Linear Least Squares Iteration (LLS-I) method has high precision, and it has proven to be a better option for settlement prediction of soft soil sub-grades. The model analysis indicates that the mean absolute percentage error (MAPE) can be minimized as compared to other soft soil sub-grades settlement prediction methods. Hence, Richards's model-based LLS-I method has a capability for simulation and settlement prediction of soft soil subgrades.
Go to article

Authors and Affiliations

Muhammad Nadeem
1
Muhammad Akbar
2
Pan Huali
3
Li Xiaoqing
1
Ou Guoqiang
3
Azka Amin
4

  1. Graduate Student School of Civil Engineering and Mechanics, HUST, Wuhan, China
  2. PhD, Research Scholar, Department of Geotechnical Engineering Institute of Mountain Hazards and Environment, Chinese Academy of Science, Chengdu, China
  3. Prof, PhD., Eng., Department of Geotechnical Engineering Institute of Mountain Hazards and Environment, Chinese Academy of Science, Chengdu, China
  4. Assistant Professor, Department of Business Administration Iqra University, Main Campus, Karachi, Pakistan

This page uses 'cookies'. Learn more