Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of the present study was to explore the influence of aiding buoyancy on mixed convection heat transfer in power-law fluids from an isothermally heated unconfined square cylinder. Extensive numerical results on drag coefficient and surface averaged values of the Nusselt number are reported over a wide range of parameters i.e. Richardson number, 0.1 ≤ Ri ≤ 5, power-law index, 0.4 ≤ n ≤ 1.8, Reynolds number, 0.1 ≤ Re ≤ 40, and Prandtl number, 1 ≤ Pr ≤ 100. Further, streamline profiles and isotherm contours are presented herein to provide an insight view of the detailed flow kinematics.
Go to article

Authors and Affiliations

Pragya Mishra
1
Lubhani Mishra
2
Anurag Kumar Tiwari
3

  1. Chaitanya Bharathi Institute of Technology, Department of Chemical Engineering, Hyderabad, Telangana 500075, India
  2. The University of Texas at Austin, Walker Department of Mechanical & Material Science Engineering, Texas Materials Institute, Austin, TX 78705, USA
  3. National Institute of Technology Jalandhar, Department of Chemical Engineering, Jalandhar, Punjab 144011, India
Download PDF Download RIS Download Bibtex

Abstract

Heat transfer study from the heated square cylinder at a different orientation angle to the stream of nanofluids has been investigated numerically. CuO-based nanofluids were used to elucidate the significant effect of parameters: Reynolds number (1–40), nanoparticle volume fraction (0.00–0.05), the diameter of the NPs (30–100 mn) and the orientation of square cylinder (0–90°). The numerical results were expressed in terms of isotherm contours and average Nusselt number to explain the effect of relevant parameters. Over the range of conditions, the separation of the boundary layers of nanofluids increased with the size of the NPs as compared to pure water. NPs volume fraction and its size had a significant effect on heat transfer rate. The square cylinder of orientation angle (45°) gained a more efficient heat transfer cylinder than other orientation angles. Finally, the correlations were developed for the average Nusselt number in terms of the relevant parameters for 45° orientation of the cylinder for new applications.
Go to article

Authors and Affiliations

Jaspinder Kaur
1
Jatinder Kumar Ratan
1
Anurag Kumar Tiwari
1

  1. Dr B.R. Ambedkar National Institute of Technology Jalandar Punjab, Chemical Engineering Department, Pin code 144011, India

This page uses 'cookies'. Learn more