Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The ecological meanings clearly indicates the need of reducing of the concentration of the CO2in the atmosphere, which can be accomplished through the lowering of the fuel consumption. This fact implies the research for the new construction solutions regarding the reduction of the weight of vehicles. The reduced weight of the vehicle is also important in the case of application of the alternative propulsion, to extend the lifetime of the batteries with the reduction of recharge cycles. The use of cast alloy AlZnMgCu compliant of plastic forming class 7xxx alloy, are intended to significantly reduce the weight of the structures, while ensuring high strength properties. The wide range of the solidification temperature, which is more than 150°C, characterizes this alloy with a high tendency to create the micro and macro porosity. The study presents the relationship between the cooling rate and the area of occurrence and percentage of microporosity. Then the results were linked to the local tensile strength predicted in the simulation analysis. The evaluation of the microporosity was performed on the basis of the CT (computed tomography) and the analysis of the alloy microstructure. The microstructure analysis was carried out on test specimen obtained from the varying wall thickness of the experimental casting. The evaluation of the mechanical properties was prepared on the basis of the static tensile test and the modified low cycle fatigue test (MLCF).

Go to article

Authors and Affiliations

M. Maj
S. Pysz
R. Żuczek
J. Piekło
Download PDF Download RIS Download Bibtex

Abstract

Based on the example of the development process of the cast suspension of a special-purpose vehicle the application of the integrated engineering design methodology (ICME – Integrated Computational Materials Engineering) and the development of construction has been presented. Identification of the operating and critical loads, which are guidelines for carrying out the structure strength shaping process, material and technological conversion, are due to the needs and requirements of the suspension system and the purpose and objectives of the special mobile platform. The developed cast suspension element construction includes the use of high-strength AlZnMgCu aluminum alloy. The properties of the used alloy and designed shape allows for the transfer of assumed operating loads in normal exploitation conditions and in the dynamic, critical loads to the susceptibility to damage in the assumed casting areas. For the proposed design, conducted numerical analyzes includes the impact of the shock wave pulse on the occurrence of the destructive stress fields. Based on their distribution, the areas of possible decomposition of the structure of the design element were estimated. The results allowed to devise an element with predicted destructions that allow to absorb a significant part of the impact energy of the shock wave front, which is also the buffer zone for the propagation of destruction for the critical kinematic nodes of the system.
Go to article

Authors and Affiliations

M. Maj
R. Żuczek
J. Piekło
S. Pysz
Download PDF Download RIS Download Bibtex

Abstract

This study investigated the effect of adding Al–5Ti–1B grain refiner on the solidification microstructure and hot deformation behavior of direct-chill (DC) cast Al–Zn–Mg–Cu alloys. The grain refiner significantly decreased the grain size and modified the morphology. Fine-grained (FG) alloys with grain refiners exhibit coarse secondary phases with a reduced number density compared to coarse-grained (CG) alloys without grain refiners. Dynamic recrystallization (DRX) was enhanced at higher compression temperatures and lower strain rates in the CG and FG alloys. Both particle stimulated nucleation (PSN) and continuous dynamic recrystallization (CDRX) are enhanced in the FG alloys, resulting in decreased peak stress values (indicating DRX onset) at 450°C. The peak stress of the FG alloys was higher at 300-400°C than that of the CG alloys because of grain refinement hardening over softening by enhanced DRX.
Go to article

Authors and Affiliations

Junho Lee
1
ORCID: ORCID
Namhyuk Seo
1
ORCID: ORCID
Sang-Hwa Lee
2
ORCID: ORCID
Kwangjun Euh
2
ORCID: ORCID
Singon Kang
3
ORCID: ORCID
Seung Bae Son
1 4
ORCID: ORCID
Seok-Jae Lee
1 4
ORCID: ORCID
Jae-Gil Jung
1 4
ORCID: ORCID

  1. Jeonbuk National University, Division of Advanced Materials Engineering, Jeonju 54896, Republic of Korea
  2. Korea Institute of Materials Science, Advanced Metals Division, Changwon 51508, Republic of Korea
  3. Dong-A University, Department of Materials Science And Engineering, Busan 49315, Republic of Korea
  4. Jeonbuk National University, Research Center for Advanced Materials Development, Jeonju 54896, Republic of Korea

This page uses 'cookies'. Learn more