Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 39
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this study, the spatial variation of daily and monthly concentration precipitation index and its aggressive-ness were used in 23 rainfall stations in the extreme north-east of Algeria over the period 1970–2010. The trend was analysed by the Mann–Kendall (MK) test. The results show that daily precipitation concentration index (CI) values are noticeably higher in places where the amount of total precipitation is low, the results of MK test show that areas of high precipitation concentration tend to increase. The seasonality and aggressiveness of precipita-tion are high in the eastern and western parts of the study region (eastern and central coastal of Constantine catchments), whereas a moderately seasonal distribution with low aggressiveness is found in the middle of the study area (plains and central Seybouse catchment). As a result, the modified Fournier index (MFI) has a signifi-cant correlation with annual precipitation, whereas the CI and monthly precipitation concentration index (PCI) show an opposite correlation in relation to annual precipitation.
Go to article

Authors and Affiliations

Hanane Bessaklia
Abderrahmane Nekkache Ghenim
Abdessalam Megnounif
Javier Martin-Vide
Download PDF Download RIS Download Bibtex

Abstract

Regaining independence by each country (Tunisia, Morocco 1956, Algeria 1962) and the publication of relevant documents (codes of family law, constitutions) created opportunities to speak more widely about social and economic rights, or about political rights for women. However, the rights granted to women were characterized by the principle of inequality, especially in Algeria and Morocco. In this difficult and complex situation, the emancipation movement of women went through various phases. In Algeria, its strength began to appear at the turn of the seventies and eighties of the twentieth century and has been constantly increased. In Morocco, in principle, the awakening took place in the early nineties of the twentieth century. Women themselves played a significant role in the activities for emancipation, engaging in various undertakings, organizations and associations, and in activating Non Profit Organizations (Organisation Non-Gouvernementale -ONG) with women participation from the end of the 80s of the twentieth century, which, in its turn, created opportunities for legal reforms, which would not exist without activities carried out by various associations, including women’s associations. The Jasmine Revolution, also known as the Arabic spring, was initiated in Tunisia, and has had a significant impact on the contemporary activities of women.

Go to article

Authors and Affiliations

Anna Barska
Download PDF Download RIS Download Bibtex

Abstract

Over 130 species are documented from the Upper Albian, Cenomanian and Upper Turonian Fahdène Formation and correlatives in Central Tunisia and northern Algeria, based on material described by Henri Coquand (1852, 1854, 1862, 1880), Léon Pervinquière (1907, 1910), Georges Dubourdieu (1953), Jacques Sornay (1955), and new collections. The material consists predominantly of limonitic nuclei, together with adults of micromorphs. There is no continuous record, and a series of faunas are recognised that can be correlated with the zonation developed in Western Europe. These are the Upper Albian Ostlingoceras puzosianum fauna, Lower Cenomanian Neostlingoceras carcitanense and Mariella (Mariella) harchaensis faunas, the upper Lower to lower Middle Cenomanian Turrilites scheuchzerianus fauna, Middle Cenomanian Calycoceras (Newboldiceras) asiaticum fauna, Upper Cenomanian Eucalycoceras pentagonum fauna, and the Upper Turonian Subprionocyclus neptuni fauna. Two new micromorph genera are described, Coquandiceras of the Mantelliceratinae and Cryptoturrilites of the Turrilitinae. Most of the taxa present have a cosmopolitan distribution, with a minority of Boreal, North American and endemic taxa.

Go to article

Authors and Affiliations

William James Kennedy
Download PDF Download RIS Download Bibtex

Abstract

The Berbers, an indigenous people of North Africa, belong to the group of “nations without a state.” For centuries, they were marginalized by the Arab majority or manipulated by European colonizers. Since the mid-twentieth century in North Africa, a movement for a Berber and Pan-Berber identity has been growing strongly. The movement has disseminated the neologism “Amazigh” as the endoethnonim of this group of peoples. The process of building (creating) a Berber identity has been slightly different in Morocco (where the stabilizing role of the monarchy has been highlighted) and in Algeria (where it has taken more violent forms). With the rise of Berber self-awareness in North Africa and the activity of the Berber diaspora in Europe (mainly in France), civil society organizations (associations) were established in Morocco and Algeria to defend the rights of the Berber minority. After many attempts and despite the resistance of Arab elites the Berber language and culture were recognized by the state authorities as equivalent to the Arabic component of the Algerian and Moroccan identity. State institutions (the Institut royal de la culture Amazighe—the IRCAM—in Morocco, and the Haut Commissariat à l’Amazighité—the HCA—in Algeria) were established for the revitalization of the Berber culture and langua
Go to article

Authors and Affiliations

Ryszard Vorbrich
1
ORCID: ORCID

  1. Uniwersytet im. Adama Mickiewicza
Download PDF Download RIS Download Bibtex

Abstract

Water quality is an environmental priority for irrigation in rainfed agriculture. Recently, water quality has been affect-ed by the uncontrolled disposal of wastewater, the use of chemical fertilizers in agriculture and, most significantly, by the excessive exploitation of water resources during the low season. The basin of the Maffragh in the Algerian north-east real is fed by two main rivers: Wadi El Kebir East and Bounnamoussa. From its source, the stream is continually contaminated with domestic and agricultural discharges through the tributaries causing a significant deterioration in water quality. In or-der to know the current state of water quality in the Maffragh basin and to determine its suitability for irrigation without any prior treatment, research has been conducted in the two streams at representative sampling points in catchment areas used for irrigating crops. To assess the quality of water and detectable compounds monitoring, laboratory methods are used. The various volumetric and colorimetric assays were carried out according to Jean Rodier. Organic parameters such as ni-trites, ammonium and phosphates, were measured using a UV/VIS 6705 JENWAY spectrophotometer, at wavelengths of 543 nm, 630 nm and 880 nm respectively for nitrites, ammonium and phosphates. The BOD5 and COD parameter was measured using a DIN EN 1899-1-H51 spectrophotometer and DIN ISO15705: 2002 spectrophotometer. The performed analyses on conductivity shows oscillating values ranging between 425 and 495 μS∙cm–1 for January 2018, while for the low water level of July 2018 the conductivity varies between 433 and 796 μS∙cm–1; this parameter is determinant for water quality assessment and its use for irrigation. Beside the conductivity test, the Riverside–Wilcox diagram was applied, to combine conductivity and sodium absorption rate (SAR). The obtained results of the two seasons show satisfactory results in the applicability of the water to irrigate in the basin.
Go to article

Bibliography

AL-OTHMAN A.A. 2019. Evaluation of the suitability of surface water from Riyadh Mainstream Saudi Arabia for a variety of uses. Arabian Journal of Chemistry. Vol. 12(8) p. 2104–2110. DOI 10.1016/j.arabjc.2015.01.001.
ASHRAF M.A., MAAH J., YUSOFF I. 2010. Water quality characterization of Varsity Lake. E-Journal of Chemistry. Vol. 7. Art. ID 396215. DOI 10.1155/2010/396215.
BARNETT M.J., JACKSON-SMITH D., HAEFFNER M. 2018. Influence of recreational activity on water quality perceptions and concerns in Utah: A replicated analysis. Journal of Outdoor Recreation and Tourism. Vol. 22 p. 26–36. DOI 10.1016/ j.jort.2017.12.003.
DERRADJI F., BOUSNOUBRA H., KHERICI N., ROMEO M., CARUBA R. 2007. Impact de la pollution organique sur la qualité des eaux superficielles dans le Nord-Est algerien [Impact of organic pollution on surface water quality in Algerian north-east]. Secheresse. No. 18 p. 7–23. DOI 10.1684/sec.2007.0065.
DERRADJI F., KHERICI N., ROMEO M., CARUBA R. 2004. Aptitude des eaux de la vallée de la Seybouse à l’irrigation (Nord-est algérien) [Aptitude of the Seybouse River valley waters to irrigation (North-East Algeria)]. Sécheresse. No. 15 p. 353–360.
KHERICI N., KHERICI H., ZOUINI D. 1996. La vulnérabilité à la pollution des eaux de la plaine d’Annaba La Mafragh (Nord-Est algerien) [Vulnerability of Annaba plain – Mafragh (northeast Algeria) to water pollution]. Hydrogeologia. Vol. 12(3) p. 5–48.
LEKOUI S., DJORFI S., FOUFOU A., BOUZNAD I.E. 2019. The impact of irrigation water returns on the water quality of Annaba El Tarf aquifers (Northeastern Algeria). Journal of Biodiversity and Environmental Sciences. Vol. 14(6) p. 290–298.
MCKINNEY M.L. 2002. Urbanization, biodiversity, and conservation: The impacts of urbanization on native species are poorly studied, but educating a highly urbanized human population about these impacts can greatly improve species conservation in all ecosystems. Biosciences. Vol. 52. Iss. 10 p. 883–890. DOI 10.1641/0006-3568(2002)052[0883:UBAC]2.0.CO;2.
MULLISS R.M., REVITT D.M., SHUTES R.B.E. 1997. The impacts of discharges from two-combined sewer over flows on the water quality of an urban watercourse. Water Science and Technology. Vol. 36. Iss. 8–9 p. 195–199. DOI 10.1016/ S0273-1223(97)00599-4.
NAJAH A.A., EL-SHAFIE A., KARIM,O.A., JAAFAR O. 2009. Prediction of Johor River water quality parameters using artificial neural networks. European Journal of Scientific Research. Vol. 28. No. 3 p. 422–435.
PEÑA-HARO S., LLOPIS-ALBERT C., PULIDO-VELAZQUEZ M., PULIDO-VELAZQUEZ D. 2010. Fertilizer standards for controlling groundwater nitrate pollution from agriculture: El Salobral-Los Llanos case study Spain. Journal of Hydrology. Vol. 392(3–4) p. 174–187. DOI 10.1016/j.jhydrol.2010.08.006.
RICHARDS L.A. 1954. Diagnosis and improvement of saline and alkali soils. Agriculture Handbook. 1st ed. Washington D.C. USDA pp. 160.
RODIER J. 2005. L’analyse de l’eau: Eaux naturelles, eaux résiduaires, eau de mer [Water analysis: Natural resources, wastewater, seawater]. 8th ed. Paris, France. Dunod. ISBN 2100496360 pp. 1578.
TAGMA T., HSISSOU Y., BOUCHAOU L., BOURAGBA L., BOUTALEB S. 2009. Groundwater nitrate pollution in Souss-Massa basin (south-west Morocco). African Journal Environmental Science and Technology. Vol. 3(10) p. 301–309. DOI 10.5897/ AJEST09.076
THIOULOUSE J., CHESSEL D., DOLE´DEC S., OLIVIER J.M. 1997. ADE-4: A multivariate analysis and graphical display software. Statistics and Computing Journal. Vol. 7 p. 75–83. DOI 10.1023/A:1018513530268.
WILCOX L.V. 1948. The quality of water for agricultural use. 1st ed. Washington D.C., USA. US Dept. Agriculture Technical Bulletin. Vol. 962 pp. 40.
ZOUINI D. 1997. Ressources en eau de surface pour l’aménagement hydraulique dans le bassin de l’Oued El Kebir (Nord-Est algérien) [Surface water resources for hydraulic development in the Oued El Kebir basin (north-eastern Algeria)]. Sécheresse. No. 8 p. 9–13.


Go to article

Authors and Affiliations

Selwa Boubguira
1
ORCID: ORCID
Derradji Zouini
1
Sayad Lamine
1
Nawel Dali
2

  1. University of Badji Mokhtar, Faculty of Earth Sciences, Geological Research Laboratory (LRG), BP 12 / 23000 Annaba, Algeria
  2. University Abess Laghrour Khenchela, Department of Ecology, Khenchela, Algeria
Download PDF Download RIS Download Bibtex

Abstract

The loss of soil quality due to erosion is a global problem, particularly affecting natural resources and agricultural pro-duction in Algeria. In this study, the Revised Universal Soil Loss Equation (RUSLE) is applied to estimate the risk of water erosion in the Ain Sefra arid watershed (Algeria). The coupling of this equation with Geographic Information Systems (GIS) allows to assess and map the soil loss rates. The land erosion is influenced by many control variables, such as the topographic factor of the terrain and the length of slope (LS factor), rainfall erosivity (R factor), sensitivity of soil to erosion (K factor), presence of vegetation (C factor) and the anti-erosion cultivation techniques (P factor). To calculate the average annual soil loss, these five factors were considered and multiplied in the RUSLE Equation. The result shows that the aver-age rate of soil loss is estimated at about 5.2 t·ha–1·y–1 over the whole watershed. This study is the first of its kind in the region and aims to assess the soil loss caused by water erosion processes in this arid zone. Consequently, it is essential to take real intervention measures in these upstream areas in order to combat this scourge, based on priorities ensuring the sustainable management of natural resources in the study area.
Go to article

Bibliography

ANRH 2020. Bulletins de Séries de données climatiques 1980–2020 [Climate Data Series Bulletins 1980–2020]. Agence Nationale des Ressources Hydrauliques Algérie pp. 30.
ARNOLD J.G., SRINIVASAN R., MUTTIAH R.S., WILLIAMS J.R. 1998. Large area hydrologic modeling and assessment part I: model development. Journal of the American Water Resources Association. Vol. 34(1) p. 73–89. DOI 10.1111/j. 1752-1688.1998.tb05961.x.
BELASRI A., LAKHOUILI A. 2016. Estimation of Soil Erosion Risk Using the Universal Soil Loss Equation (USLE) and Geo-Information Technology in Oued El Makhazine Watershed, Morocco. Journal of Geographic Information System. Vol. 8 p. 98–107. DOI 10.4236/jgis.2016.81010.
BENCHETTOUH A., KOURI L., JEBARI S. 2017. Spatial estimation of soil erosion risk using RUSLE/GIS techniques and practices conservation suggested for reducing soil erosion in Wadi Mina watershed (northwest, Algeria). Arabian Journal of Geosciences. Vol. 10(4). DOI 10.1007/s12517-017-2875-6.
BENKADJA R., BOUSSAG F., BENKADJA A. 2015. Identification et évaluation du risque d’érosion sur le bassin versant du K’sob (Est Algérien) [Identification and evaluation of erosion risk in the K'sob watershed (Eastern Algeria)]. Bulletin of Engineering Geology and the Environment. Vol. 74 p. 91–102. DOI 10.1007/s10064-014-0611-y.
BENSELAMA O., MAZOUR M., HASBAIA M., DJOUKBALA O., MOKHTARI S. 2018. Prediction of water erosion sensitive areas in Mediterranean watershed, a case study of Wadi El Maleh in north-west of Algeria. Environmental Monitoring and Assessment. Vol. 190(12), 735. DOI 10.1007/s10661-018-7117-1.
DJOUKBALA O., MAZOUR M., HASBAIA M., BENSELAMA O. 2018. Estimating of water erosion in semiarid regions using RUSLE equation under GIS environment. Environmental Earth Sciences. Vol. 77, 345. DOI 10.1007/s12665-018-7532-1.
DPSB 2016. Monographie de la Wilaya de Naâma [Monograph of the Wilaya of Naâma]. Direction de la programmation et du Suivi Budgétaires de La Wilaya De Naâma pp. 164.
FAO 2015. Status of the world’s soil resources (SWSR) – Main report. Soil change: Impacts and responses. Chapt. 7. The impact of soil change on ecosystem services. Rome. Food and Agriculture Organization of the Unites Nations. ISBN 978-92-5-109004-6 pp. 222.
FAO/IIASA/ISRIC/ISSCAS/JRC 2012. Harmonized world soil database version 1.2 [online]. Rome Food and Agriculture Organization of the Unites Nations, Laxenburg, International Institute for Applied Systems Analysis. [Access 12.02.2019]. Available at: http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/HWSD_Data.html?sb=4
GESSESSE B., BEWKET W., BRÄUNING A. 2015. Model-based characterization and monitoring of runoff and soil erosion in response to land use/land cover changes in the Modjo watershed, Ethiopia. Land Degradation and Development. Vol. 26 p. 711–724. DOI 10.1002/ldr.2276.
HASBAIA M., DOUGHA M., BENJEDOU F. 2017. Erosion sensitivity mapping using a multi-criteria approach under GIS environment the case of the semiarid Hodna Basin in Central Algeria. International Journal of Water Resources and Arid Environments. Vol. 6(1) p. 13–19.
HONORATO R., BARRALES L., PENA I., BARRERA F. 2001. Evaluacion del modelo USLE en la estimacion de la erosion en seis localidades entre la IV y IX Region de Chile [Evaluation of the USLE model in the estimation of erosion in six locations between the IV and IX Region of Chile]. Ciencia e Investigacion Agraria. Vol. 28(1) p. 7–14.
KALMAN R. 1967. Le facteur climatique de l’érosion dans le bassin de Sebou [The climatic factor of erosion in the Sebou basin. Sebou Project, Report]. Projet Sebou, Rapport. Ronéo pp. 40.
KOUSSA M., BOUZIANE M.T. 2018. Apport du SIG a la cartographie des zones à risque d’érosion hydrique dans la région de Djelfa, Algérie. Lebanese Science Journal. Vol. 19. No. 1 p. 31–46. DOI 10.22453/LSJ-019.1.031-046.
KOUSSA M., BOUZIANE M.T. 2019. Estimation des paramètres de l'érosion hydrique par Approche SIG/USLE : cas du bassin versant de l'Oued Arab (région de Khenchela, Nord-Est de l’Algérie) [Estimation of water erosion parameters by GIS/USLE approach: Case of the Oued Arab watershed (Khenchela region, North-East Algeria)]. Agriculture and Forestry Journal. Vol. 3(1) p. 36–45. DOI 10.5281/zenodo. 3239252.
MAZOUR M., ROOSE E. 2002. Influence de la couverture végétale sur le ruissellement et l’érosion des sols sur parcelles d’érosion dans des bassins versants du Nord-Ouest de l’Algérie. En : Techniques traditionnelles de GCES en milieu méditerranéen [Influence of vegetation cover on runoff and soil erosion on erosion plots in watersheds in north-western Algeria. In: Traditional techniques of GCES in the Mediterranean environment]. Eds. E. Roose, M. Sabir, G. De Noni. Bulletin – Réseau Erosion. Vol. 21 p. 320–330.
NEARING M., FOSTER G., LANE L., FINKNER S. 1989. A process-based soil erosion model for USDA-Water Erosion Prediction Project technology. Transactions for the ASAE. Vol. 32(5) p. 1587–1593. DOI 10.13031/2013.31195.
NEITSCH S., ARNOLD J., KINIRY J., WILLIAMS J. 2011. Soil & water assessment tool theoretical documentation version 2009. Texas Water Resources Institute Technical Report. No. 406 pp. 647.
PHAM T.G., DEGENER J., KAPPAS M. 2018. Integrated universal soil loss equation (USLE) and Geographical Information System (GIS) for soil erosion estimation in A Sap basin: Central Vietnam. International Soil and Water Conservation Research. Vol. 6(2) p. 99–110. DOI 10.1016/j.iswcr.2018.01.001.
RANGO A., ARNOLDUS H.M.J. 1977. Applications de la télédé¬tection a l'amenagement des bassins versants. En : Aménagement des bassins versants [Applications of remote sensing for watershed management. In: Watershed management] [online]. Cahiers techniques de la FAO. Rome. FAO p. 1–11. [Access 12.02.2019]. Available at: http://www.fao.org/3/AD071F/AD071f00.htm
RENARD K.G., FOSTER G.R., WEESIES G.A., MCCOOL D.K., YODER D.C. 1997. Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agricultural Handbook. No. 703 pp. 385.
RODRIGUEZ J., SUÁREZ M. 2010. Comparison of mathematical algorithms for determining the slope angle in GIS environment. Aqua-LAC. Vol. 2. No. 2 p. 78–82.
SEMWAL P., KHOBRAGADE S.D., NAINWAL H.C. 2017. Modelling of recent erosion rates in a lake catchment in the North-Western Siwalik Himalayas. Environmental Processes. Vol. 4 p. 355–374. DOI 10.1007/s40710-017-0234-y.
SHIN G.J. 1999. The analysis of soil erosion analysis in watershed using GIS. Ph.D. Thesis. Chuncheon. Gang-won National University. South Korea.
SOUIDI Z., HAMIMED A., DONZE F. 2014. Cartographie du risque de dégradation des terres en région semi-aride: Cas des Monts de Beni Chougrane dans le Tell Occidental Algérien [Mapping the risk of land degradation in the semi-arid region: Case of the Beni Chougrane Mountains in the Algerian Western Tell]. Geo-Eco-Trop. No. 38 p. 85–102.
STONE R.P., HILBORN D. 2000. Équation universelle des pertes en Terre (USLE) [Universal Soil Loss Equation (USLE)]. Ontario. Ministère de l’agriculture, de l’alimentation et des affaires rurales. Fiche technique. Commande. No. 00-002 pp. 8.
THIAW I., HONORE D. 2017. Mapping of soil erosion risk in the Diarha watershed using RUSLE, RS and GIS. American Journal of Remote Sensing. Vol. 5. No. 4 p. 30–42. DOI 10.11648/j.ajrs.20170504.11.
TOUBAL A.K., ACHITE M., OUILLON S., DEHNI A. 2018. Soil erodibility mapping using the RUSLE model to prioritize erosion control in the Wadi Sahouat basin, north-west of Algeria. Environmental Monitoring and Assessment. Vol. 190, 210. DOI 10.1007/s10661-018-6580-z.
WOLDEMARIAM G.W., IGUALA A.D., TEKALIGN S., REDDY R.U. 2018. Spatial modeling of soil erosion risk and its implication for conservation planning: The case of the Gobele Watershed, East Hararghe Zone, Ethiopia. Land. Vol. 7(1), 25. DOI 10.3390/land7010025.
WISCHMEIER W.H., SMITH D.D. 1978. Predicting rainfall erosion losses – A guide to conservation planning. Supersedes Agriculture Handbook. No. 282. Predicting rainfall-erosion losses from cropland east of the Rocky Mountains. Agriculture Handbook. No. 537. Washington, DC. USDA pp. 58.
Go to article

Authors and Affiliations

Ahmed Melalih
1 2
ORCID: ORCID
Mohamed Mazour
3

  1. Abou Bakr Belkaïd University, Faculty of Natural and Life Sciences and theUniverse, BP 230, New campus, Tlemcen, 13000 Algeria
  2. University Center of Ain Temouchent Belhadj Bouchaib, Laboratory of Applied Hydrology and Environment (LHYDENV), Ain Temouchent, Algeria
  3. University Center of Ain Temouchent Belhadj Bouchaib, Institute of Science and Technology, Ain Temouchent, Algeria
Download PDF Download RIS Download Bibtex

Abstract

In Algeria, modern agriculture was introduced in the Saharan region through the implementation of the law n° 83–18 of August 13, 1983, relating to access to agricultural land ownership (Fr. Accession à la Propriété Foncière Agricole (APFA) in French). This law was hugely successful and sparked a real enthusiasm for this type of activity, which resulted in an expansion of agricultural areas at the M’Zab level, similar to that observed in other Saharan regions. Over the past decades, the agricultural area has declined markedly (–0.4%), which was due to multiple causes, including ecological problems, such as urban discharges and the rise in the water level. So far, little research has been done to assess the agricultural situation and irrigation in this region. The objective of this work is to analyse and discuss the constraints and impacts of water and agricultural management on sustainability of the ecosystem in the Saharan environment. This work is based on extensive research, which has been carried out in the M’Zab region on the oasis system and its evolution. It was enriched with dozens of direct surveys, performed among farmers working in agricultural areas. The results show that agricultural development and the sustainability of farms in this region face several technical and social constraints, the most important of which are the workforce-related problems and water management. Several measures have been recommended to be taken not only to preserve the ecosystem but also to give significance to the large investments made by the public authorities.
Go to article

Authors and Affiliations

Rachid Zegait
1
ORCID: ORCID
Hocine Bensaha
2
ORCID: ORCID
Tayeb Addoun
3
ORCID: ORCID

  1. University of Djelfa, Faculty of Science and Technology, Hydraulic Department, Algeria
  2. Applied Research Unit in Renewable Energies, URAER, Algeria
  3. Oran 2 University, Faculty of Earth and Universe Sciences, Geography Department, Algeria
Download PDF Download RIS Download Bibtex

Abstract

Optimal estimation of water balance components at the local and regional scales is essential for many applications such as integrated water resources management, hydrogeological modelling and irrigation scheduling. Evapotranspiration is a very important component of the hydrological cycle at the soil surface, particularly in arid and semi-arid lands. Mapping evapotranspiration at high resolution with internalised calibration (METRIC), trapezoid interpolation model (TIM), two-source energy balance (TSEB), and soil-plant-atmosphere and remote sensing evapotranspiration (SPARSE) models were applied using Landsat 8 images for four dates during 2014–2015 and meteorological data. Surface energy maps were then generated. Latent heat flux estimated by four models was then compared and evaluated with those measured by applying the method of Bowen ratio for the various days. In warm periods with high water stress differences and with important surface temperature differences, METRIC proves to be the most robust with the root-mean-square error ( RMSE) less than 40 W∙m –2. However, during the periods with no significant surface temperature and soil humidity differences, SPARSE model is superior with the RMSE of 35 W∙m –2. The results of TIM are close to METRIC, since both models are sensitive to the difference in surface temperature. However, SPARSE remains reliable with the RMSE of 55 W∙m –2 unlike TSEB, which has a large deviation from the other models. On the other hand, during the days when the temperature difference is small, SPARSE and TSEB are superior, with a clear advantage of SPARSE serial version, where temperature differences are less important.
Go to article

Authors and Affiliations

Tewfik A. Oualid
1
ORCID: ORCID
Abderrahmane Hamimed
1
ORCID: ORCID
Abdelkader Khaldi
1
ORCID: ORCID

  1. University Mustapha Stambouli of Mascara, Laboratory of Biological Systems and Geomatics, P.O. Box 305, Route de Mamounia, 29000, Mascara, Algeria
Download PDF Download RIS Download Bibtex

Abstract

In 2014 Yasmina Khadra published the novel Qu’attendent les singes. It depicts a negative image of Algeria in the first decade of the 21st century – a country ruled by corrupted elites capable of all crimes. In the same year the writer announced his decision to participate in the presidential election in Algeria. The aim of this article is to analyze Khadra’s latest crime novel and to ask question about the links between the political campaign and the promotion of the book.
Go to article

Authors and Affiliations

Jędrzej Pawlicki
Download PDF Download RIS Download Bibtex

Abstract

Analysis of groundwater quality in the alluvial aquifer of the lower Soummam Valley, North-East of Algeria, was realised through the application of multivariate statistical methods: hierarchical cluster analysis (HCA) in Q and R modes, factorial correspondence analysis (FCA), and principal component analysis (PCA), to hydrochemical data from 51 groundwater samples, collected from 17 boreholes during periods of June, September 2016 and March 2017. The objectives of this approach are to characterise the water quality and to know the factors which govern its evolution by processes controlling its chemical composition. The Piper diagram shows two hydrochemical facies: calcium chloride and sodium bicarbonate. Statistical techniques HCA, PCA, and FCA reveal two groups of waters: the first (EC, Ca2+, Mg2+, Cl–, SO42– and NO3–) of evaporitic origin linked to the dissolution processes of limestone rocks, leaching of saliferous soils and anthropogenic processes, namely contamination wastewater and agricultural activity, as well marine intrusion; and the second group (Na+, K+, and HCO3–) of carbonated origin influenced by the dissolution of carbonate formations and the exchange of bases. The thermodynamic study has shown that all groundwater is undersaturated with respect to evaporitic minerals. On the other hand, it is supersaturated with respect to carbonate minerals, except for water from boreholes F9, F14, and F16, which possibly comes down to the lack of dissolution and arrival of these minerals. The results of this study clearly demonstrate the utility of multivariate statistical methods in the analysis of groundwater quality.
Go to article

Authors and Affiliations

Messaoud Ghodbane
1
ORCID: ORCID
Lahcen Benaabidate
2
ORCID: ORCID
Abderrahmane Boudoukha
3
ORCID: ORCID
Aissam Gaagai
4
ORCID: ORCID
Omar Adjissi
5
ORCID: ORCID
Warda Chaib
4
ORCID: ORCID
Hani Amir Aouissi
4
ORCID: ORCID

  1. University of Mohamed Boudiaf, Faculty of Technology, Laboratory of City, Environment, Society and Sustainable Development, 166 Ichebilia, 28000, M’sila, Algeria
  2. University of Sidi Mohammed Ben Abdellah, Faculty of Sciences and Techniques, Laboratory of Functional Ecology and Environment Engineering, Fez, Morocco
  3. University of Batna 2, Laboratory of Applied Research in Hydraulics, Batna, Algeria
  4. Scientific and Technical Research Center for Arid Areas (CRSTRA), Biskra, Algeria
  5. University of Mohamed Boudiaf, Faculty of Technology, M’sila, Algeria
Download PDF Download RIS Download Bibtex

Abstract

Arid and semi-arid areas are characterised by differentiation in meteorological conditions. Sometimes the rains are rare and not very intense and at other times they are dense and very intense, resulting in torrents that often lead to strong soil erosion. Most of the time, the losses occur at the solids level because the erosion effect is too high. In this study, we want to evaluate the transfer of solid sediments as a function of liquid transport in the basin of Wadi Zeddine at Ain Defla in Algeria. To understand this phenomenon, we used the data of liquid flows ( Ql, m 3∙s –1) and concentration of suspended sediments ( C, g∙dm –3), transported in the river, the data collected by the NWRA (National Water Resources Agency), over 24 years have been used to find a relationship between these two quantities, to estimate the quantity of solid transport Qs (kg∙s –1) in the watercourse of the catchment area studied. The results obtained show a good correlation between solid and liquid flows, with a correlation coefficient estimated at 90%, and the average annual sediment supply recorded at the outlet of the Wadi Zeddine watershed is estimated at around 88,048 Mg, which corresponds to 202 Mg∙km –2∙y –1/ erosion rate. This value is comparable to those found in other regions with similar hydrological regimes.
Go to article

Authors and Affiliations

Zohir Bouleknafet
1
ORCID: ORCID
Omar Elahcene
1

  1. Ziane Achour University Djelfa, Sciences of Natural and Life Faculty, BP 3117, City Ain Chih, Djelfa, 17000, Algeria
Download PDF Download RIS Download Bibtex

Abstract

Streamflow modelling is a very important process in the management and planning of water resources. However, com-plex processes associated with the hydro-meteorological variables, such as non-stationarity, non-linearity, and randomness, make the streamflow prediction chaotic. The study developed multi linear regression (MLR) and back propagation neural network (BPNN) models to predict the streamflow of Wadi Hounet sub-basin in north-western Algeria using monthly hy-drometric data recorded between July 1983 and May 2016. The climatological inputs data are rainfall (P) and reference evapotranspiration (ETo) on a monthly scale. The outcomes for both BPNN and MLR models were evaluated using three statistical measurements: Nash–Sutcliffe efficiency coefficient (NSE), the coefficient of correlation (R) and root mean square error (RMSE). Predictive results revealed that the BPNN model exhibited good performance and accuracy in the prediction of streamflow over the MLR model during both training and validation phases. The outcomes demonstrated that BPNN-4 is the best performing model with the values of 0.885, 0.941 and 0.05 for NSE, R and RMSE, respectively. The highest NSE and R values and the lowest RMSE for both training and validation are an indication of the best network. Therefore, the BPNN model provides better prediction of the Hounet streamflow due to its capability to deal with complex nonlinearity procedures.

Go to article

Authors and Affiliations

Dalila Beddal
Mohammed Achite
Djelloul Baahmed
Download PDF Download RIS Download Bibtex

Abstract

The objective of this study is to map through multisource data, the change in land use structure and quantify its evolution around the semi-arid watershed of Wadi Sarno of Sidi Bel Abbès between 2000 and 2021. To this end, satellite images of 2000 and 2021 have been exploited by remote sensing and GIS, as well as field surveys for verification and validation of the results obtained. The methodology is based on supervised classification by maximum likelihood from the processing of satellite images. The analysis of the dynamics of land use shows that the areas of natural formations (dense forest and bare land) have decreased from 17,560 ha to 15,516 ha, that is to say, a regression of 8.04%, while the anthropised formations (Agriculture, open forest and rangeland, built-up areas, water bodies) have experienced an increase in their surface area, they have gone from 7901 ha to 9945 ha, that is to say, 10.4% of the total surface area of the basin. In the light of these results, it is possible to define priority areas for restoring degraded zones and enhancing natural formations. by giving priority to perennial crops to fix the soil in place and benefit from additional income for the region's farmers. By planting hardy species such as olives, figs, almonds, carob trees and so on. These species have proven their effectiveness and adaptation to local soil and climate conditions.
Go to article

Authors and Affiliations

Ahmed Melalih
1 2
ORCID: ORCID

  1. Djillali Liabès University of Sidi Bel Abbès, Faculty of Natural and Life Sciences, Department of Agricultural Sciences, BP 89, Road to Tlemcen (Ex ITMA), 22000, Sidi Bel Abbès, Algeria
  2. Laboratory of Nutrition, Pathology, Agro-Biotechnology, and Health, Research Center ex CFTE, Road to Mascara, 22000, Sidi Bel Abbès, Algeria
Download PDF Download RIS Download Bibtex

Abstract

Evaluating the capacity to meet the need of water is crucial in order to fulfil expectations of managers, particularly in the Mediterranean area. The region is risk in terms of resources available as well as a steadily increasing in demand for water. The frontier drain of the city of Souk Ahras is located at the extreme Northeast of Algeria, on the Algerian-Tunisian borders, the study region includes eight city, which are Taoura, Drea, Zaârouria, Merahna, Ouillen, SidiFredj, Heddada and Khedara, these are relatively poor in surface water, but groundwater has always been the main water resource. The region’s population is around 93,000 inhabitants, 45% of them living in rural areas. Annual average precipitation is approximately 470 mm∙y–1, but it is distributed unequally in space and time. The average supply water varies from one zone to another and the coverage of demand by groundwater in the region remains low and does not meet all needs. Faced with the regions socioeconomic growth and development, this situation is expected to worsen in the future.
In this context, the WEAP (Water Evaluation And Planning system) model was applied to simulate the water balance and assess strategies for the sustainable management of water resources and makes it possible to explore different scenarios, in order to choose the desired scenario to ensure the sustainable development of the sub-basin of the border until 2050. The availability of drinking water permanently in rural areas is a factor in the stability of a population and a means of combating the rural migration and the congestion of urban centres.
Go to article

Authors and Affiliations

Farid Rouaibia
1
Lamine Sayad
2
Badra Attoui
3

  1. Higher School of Teachers of Constantine Assia Djabar; InfraRes Laboratory, Souk Ahras Department of History and Geography, Constantine, Algeria
  2. University of Badji Mokhtar, Faculty of Earth Sciences, Department of Geology, Annaba, Algeria
  3. University of Badji Mokhtar, Faculty of Earth Sciences, Geological Research Laboratory (LRG), BP 12, 23000 Annaba, Algeria
Download PDF Download RIS Download Bibtex

Abstract

The article is an attempt to present and discuss – based on the struggle against Barbary pirates and corsairs waged in the Mediterranean Sea – dynamic and complex political and economic processes as well as diplomatic efforts that contributed to the French conquest of Algiers in 1830. The first three decades of the 19th century were among the most turbulent periods in the history of the French nation. Defeated and humiliated by the enemy coalition in 1815, France did not give up on her “imperial dream”, this time trying to make it come true in a non-distant Maghreb. The way to achieve this goal was, however, quite bumpy. At that time, the western part of the Mediterranean Sea was an arena of competition, mainly between the United States and Great Britain. After all, this turned out to be very favourable to France. Wishing to introduce an extra element into the game, eliminate rivals for overseas supremacy, as well as win Russia – that was gradually strengthening her influence in the eastern part of the Mediterranean Sea – as an ally, at the end of the 1820’s Great Britain became an advocate of her neighbour across the English Channel. Gradually regaining her economic potential and international importance, France reached for Algiers by entering the armed conflict. However, the French stronghold in Maghreb would soon pose a major challenge to the British colonialism in Africa. Expressing their major concern over the security of so-called “imperial route” leading via the Mediterranean sea, British politicians and statesmen adopted a new political stance toward the declining Ottoman Empire. Owing to their “independence and integrity” doctrine (formulated in 1830’s), the rich Ottoman heritage managed to “survive” by the outbreak of World War II.
Go to article

Authors and Affiliations

Zygmunt Stefan Zalewski

This page uses 'cookies'. Learn more