Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The influence of the hold time of the austempering heat treatment at 280°C on the microstructure and corrosion resistance in NaCl-based media of austempered ductile iron was investigated using X-ray diffraction, micro-hardness measurements, corrosion tests and surface observations. Martensite was only found in the sample which was heat treated for a short period (10 minutes). Corrosion tests revealed that this phase does not play any role in the anodic processes. Numerous small pits were observed in the α-phase which is the precursor sites in all samples (whatever the value of the hold time of the austempering heat treatment).

Go to article

Authors and Affiliations

H. Krawiec
V. Vignal
J. Lelito
A. Krystianiak
E. Tyrała
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the work was to determine the morphology of graphite that occurs in vermicular cast iron, both in the as-cast state and after heat treatment including austenitization (held at a temperature of 890 °C or 960 °C for 90 or 150 min) and isothermal quenching (i.e. austempering, at a temperature of 290 °C or 390 °C for 90 or 150 min). In this case, the aim here was to investigate whether the heat treatment performed, in addition to the undisputed influence of the cast iron matrix on the formation of austenite and ferrite, also affects the morphology of the vermicular graphite precipitates and to what extent. The investigations were carried out for the specimens cut from test coupons cast in the shape of an inverted U letter (type IIb according to the applicable standard); they were taken from the 25mm thick walls of their test parts. The morphology of graphite precipitates in cast iron was investigated using a Metaplan 2 metallographic microscope and a Quantimet 570 Color image analyzer. The shape factor F was calculated as the quotient of the area of given graphite precipitation and the square of its perimeter. The degree of vermicularization of graphite was determined as the ratio of the sum of the graphite surface and precipitates with F <0.05 to the total area occupied by all the precipitations of the graphite surface. The examinations performed revealed that all the heat-treated samples made of vermicular graphite exhibited the lower degree of vermicularization of the graphite compared to the corresponding samples in the as-cast state (the structure contains a greater fraction of the nodular or nearly nodular precipitates). Heat treatment also caused a reduction in the average size of graphite precipitates, which was about 225μm2 for the as-cast state, and dropped to approximately 170-200 μm2 after the austenitization and austempering processes.
Go to article

Bibliography

[1] Sorelmetal, On the nodular cast iron. (2006). Warsaw: Ed. Metals & Minerals Ltd.
[2] Tupaj, M., Orłowicz, A. W., Mróz, M., Kupiec, B., et al. (2020). Ultrasonic Testing of Vermicular Cast Iron Microstructure. Archives of Foundry Engineering. 20(4), 36-40. DOI: 10.24425/afe.2020.133345.
[3] Guzik, E. & Kleingartner, T. (2009). A study on the structure and mechanical properties of vermicular cast iron with pearlitic-ferritic matrix. Archives of Foundry Engineering. 9(3), 55-60.
[4] Zhang, M.X., Pang, J.C., Qiu, Y., Li, S.X., et al. (2020). Influence of microstructure on the thermo-mechanical fatigue behavior and life of vermicular graphite cast irons. Materials Science & Engineering A. 771, 138617.DOI: 10.1016/J.MSEA.2019.138617.
[5] Zhang, Y., Guo, E., Wang, L., Zhao, S., et al. (2020). Effect of the matrix structure on vermicular graphite cast iron properties. International Journal of Materials Research. 111(5), 379-384. DOI: 10.3139/146.111891.
[6] Qiaoqin, G., Zhong, Y., Ding, G., Dong, T. et al. (2019). Research on the oxidation mechanism of vermicular graphite cast iron. Materials. 12, 3130; DOI: 10.3390/ma12193130.
[7] Perzyk, M., Waszkiewicz, S., Kaczorowski, M., Jopkiewicz, A. (2000). Foundry. Warsaw: ED. Science and Technology.
[8] Kosowski, A. (2008). Foundations of foundry. Krakow: Ed. Scientific Akapit.
[9] Soiński, M.S. & Warchala, T. (2006). Cast iron moulds for glassmaking industry. Archives of Foundry. 6(19), 289-294.
[10] Warchala, T. (1988). Metallurgy and iron founding. Part 1 The structure and properties of cast iron. Ed. Częstochowa University of Technology.
[11] Andrsova, Z., Volesky, L. (2012). The potential of isothermally hardened iron with vermicular graphite. Comat 2021. Recent trends in structural materials. 21 - 22. 11. 2012, Plzeň, Czech Republic, EU.
[12] Gumienny, G. & Kacprzyk, B. (2018). Copper in Ausferritic Compacted Graphite Iron. Archives of Foundry Engineering. 18(1), 162-166. DOI: 10.24425/118831.
[13] Pytel, A., Gazda, A. (2014) Evaluation of selected properties in austempered vermicular cast iron (AVCI). Transactions of Foundry Research Institute. LIV(4), 23-31. DOI: 10.7356/iod.2014.18.
[14] Andršová, Z., Kejzlar, P., Švec, M. & Skrbek, B. (2017). The effect of heat treatment on the structure and mechanical properties of austempered iron with vermicular graphite. Materials Science Forum. 891, 242-248. DOI: 10.4028/www.scientific.net/MSF.891.242.
[15] Kazazi, A., Montazeri, S.M. & Boutorabi, S.M.A. (2020). The austempering kinetics, microstructural development, and processing window in the austempered, Fe-3.2C-4.8Al compacted graphite cast iron. Iranian Journal of Materials Science and Engineering. 17(4), 46-54. DOI: 10.22068/ijmse.17.4.46.
[16] Jakubus, A., Kostrzewa, J., Ociepa, E. (2021). The influence of parameters of heat treatment on the microstructure and strength properties of the ADI and the AVGI irons. METAL 2021, 30th Anniversary International Conference on Metallurgy and Materials. May 26 - 28, 2021, Brno, Czech Republic, EU (pp.34-39). DOI: 10.37904/metal.2021.4082.
[17] Podrzucki, C. (1991). Cast iron. Structure, properties, applications. vol. 1 and 2, Cracow: Ed. ZG STOP. (in Polish).
[18] Soiński, M.S. & Mierzwa, P. (2011). Effectiveness of cast iron vermicularization including ‘conditioning’ of the alloy. Archives of Foundry Engineering. 11(2), 133-138.
[19] Warchala, T. (1995). Metallurgy and iron founding. Part 2 Cast iron technology. Ed. Czestochowa University of Technology.
[20] Mierzwa, P. & Soiński, M.S. (2010). The effect of thermal treatment on the mechanical properties of vermicular cast iron. Archives of Foundry Engineering. 10(spec.1), 99-102.
[21] Mierzwa, P., Soiński, M.S. (2012). Austempered cast iron with vermicular graphite. 70th World Foundry Congress (WFC 2012): Monterrey, Mexico, April 2012, (pp. 25-27).
[22] Mierzwa, P. & Soiński, M.S. (2014). Austempered cast iron with vermicular graphite. Foundry Trade Journal International. 188(3713), April 2014, 96-98.
[23] Polish Standard PN-EN 1563, Founding. Spheroidal graphite cast iron, (2000).
[24] Soiński, M.S. (1980). Application of shape measurement of graphite precipitates in cast iron in optimising the spheroidizing process. Acta Stereologica. 5(2), 311-317.
Go to article

Authors and Affiliations

M.S. Soiński
1
A. Jakubus
1
ORCID: ORCID
B. Borowiecki
1
P. Mierzwa
2

  1. The Jacob of Paradies University in Gorzów Wielkopolski, ul. Teatralna 25, 66-400 Gorzów Wielkopolski, Poland
  2. Czestochowa University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The research article address, the mechanical properties such as fatigue, impact strength and tribological properties of Austempered ductile iron (ADI) has been investigated. The samples of ADI iron were austenitized at 927°C for 2 hrs and later it was under austempering process for 2 hrs at a temperature range of 240°C to 400°C. Experiments under axial loading has been carried out on three different compositions (without Ni(X), 0.22 wt % Ni (X1), 0.34 wt. % Ni (X2). Fabricated test bars were converted in to as per ASTM standard samples for different tests. In order to study the influence of chunky nickel morphology studies on fatigue life and impact strength were carried out on a second set of specimens without any microstructural defect. Metallurgical analyses were performed on all the samples of heat treated samples (AF – Ausferrite, MB – Mixed bainite, M – Martensite, RA – Retained Austenite and N-Nodule) were found and compared. It was found that a mean content of 22% of chunky nickel in the microstructure (with respect to total Ni content) influence considerably the fatigue and impact strength properties of the cast iron. Moreover tribological properties of the specimens were also studied under dry sliding conditions at various sliding speed and load. The wear resistance and coefficient of friction were found to increase with increase in load and sliding speed.

Go to article

Authors and Affiliations

T. Ramkumar
S. Madhusudhanan
I. Rajendran
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of research on the abrasion resistance of cast iron with vermicular graphite in the as-cast state and after austempering (the latter material is referred to as AVGI – Austempered Vermicular Graphite Iron). Austenitization was carried out at the temperature values of either 900°C or 960°C, and austempering at the temperature values of either 290°C and or 390°C. Both the austenitization and the austempering time was equal to 90 minutes. The change of the pearlitic-ferritic matrix to the ausferritic one resulted in an increase in mechanical properties. Abrasion tests were conducted by means of the T-01M pin-on-disc tribometer. The counter-sample (i.e. the disc) was made of the JT6500 friction material. Each sample was subject to abrasion over a sliding distance of 4000 m. The weight losses of both samples and counter-samples were determined by the gravimetric method. It was found that the vermicular cast iron austenitized at 900°C and austempered at 290°C was characterized by the lowest wear among the evaluated cast iron types. The geometric structure of the surface layer after the dry friction test exhibited irregular noticeable grooves, distinct oriented abrasion traces, plastic flow of the material, microcracks, and pits generated by tearing out the abraded material. The largest surface roughness was found for the AVGI cast iron heat-treated according to the variant 3 (Tγ =900 ºC; Tpi = 390°C), while the smallest one occurred in AVGI cast iron subject to either the variant 2 (Tγ =960 ºC; Tpi = 290°C) or the variant 4 (Tγ =900 ºC; Tpi = 290°C) of heat treatment and was equal to either 2.5 μm or 2.66 μm, respectively. It can be seen that the surface roughness decreases with the decrease in the austempering temperature.
Go to article

Bibliography

[1] Hebda, M., Wachal, A. (1980). Tribology. Warsaw: Ed. Scientific and Technical Publishers.
[2] Hebda, M. (2007). Processes of friction, lubrication and wear of machines. Warsaw – Radom: Ed. Institute of Sustainable Technologies - PIB.
[3] Podrzucki, C. (1991). Cast iron. Structure, properties, application. vol. 1 and 2. Krakow: Ed. ZG STOP. (in Polish).
[4] Kopyciński, D., Kawalec, M., et al. (2013). Analysis of the structure and abrasive wear resistance of white cast iron with precipitates of carbides. Archives of Metallurgy and Materials. 58(3), 973-976.
[5] Szajnar, J., Walasek, A. & Baron, C. (2013). Tribological and corrosive properties of the parts of machines with surface alloy layer. Archives of Metallurgy and Materials. 58(3), 931-936.
[6] Kovac, P., Jesic, D., Sovilj-Nikic, S., et al. (2018). Energy aspects of tribological behaviour of nodular cast iron. Journal of Environmental Protection and Ecology. 19(1), 163-172.
[7] Cabanne, P., Forrest, R., Roedter, H. (2006). Sorelmetal about nodular cast iron. Warsaw: Metals & Minerals Ltd.
[8] Gumienny, G. (2013). Effect of carbides and matrix type on wear resistance of nodular cast iron. Archives of Foundry Engineering. 13(3), 25-29.
[9] Jeyaprakash, N., Sivasankaran, S., Prabu G., Yang, Che-Hua, & Alaboodi Abdulaziz S. (2019). Enhancing the tribological properties of nodular cast iron using multi wall carbon nano-tubes (MWCNTs) as lubricant additives. Materials Research Express. 6(4). DOI: https://doi.org/10.1088/2053-1591/aafce9
[10] Wojciechowski A., Sobczak J. (2001) Composite brake discs for road vehicles. Warsaw: Motor Transport Institute.
[11] Guzik, E. (2001). Cast iron refining processes. Selected Issues. Archive of Foundry. Monograph No. 1M, 2001. Ed. PAN.
[12] Duenas, J.R., Hormaza, W. & CastroGüiza, G.M. (2019). Abrasion resistance and toughness of a ductile ironproduced by two molding processes with a shortaustempering. Journal of Materials Research and Technology. 8(3), 2605-2612.
[13] Han, J.M., Zou, Q., Barber, G.C. & et al. (2012). Study of the effects of austempering temperature and time on scuffing behavior of austempered Ni–Mo–Cu ductile iron. Wear. 290-291, 99-105
[14] Du, Y., Gao, X., Wang, X. & et al. (2020). Tribological behavior of austempered ductile iron (ADI) obtained at different austempering temperatures. Wear. 456-457(203396), 1-12. DOI: 10.1016/j.wear.2020.203396
[15] Kochański, A., Krzyńska, A., Chmielewski, T. & Stoliński, A. (2015). Comparison of austempered ductile iron and manganese steel wearability. Archives of Foundry Engineering. 15(spec.1), 51-54.
[16] Myszka, D. (2005). Microstructure and surface properties of ADI cast iron. Archives of Foundry. 5(15), 278-283.
[17] Kumari, R., Rao, P. (2009). Study od’s wear behaviour of austempered ductile iron. Journal of Materials Research. 44, 1082-1093.
[18] Medyński, D. & Janus, A. (2018). Abrasive – wear resistance of austenitic cast iron. Archives of Foundry Engineering. 18(3), 43-48.
[19] Pytel, A. & Gazda, A. (2014). Evaluation of selected properties in austempered vermicular cast iron (AVCI). Works of the Foundry Research Institute. LIV(4), 23-31.
[20] Panneerselvama, S., Martis, C.J., Putatunda, S. K. & Boileau, J. M. (2015). An investigation on the stability of austenite in Austempered Ductile Cast Iron (ADI). Materials Science and Engineering: A. 625, 237-246.
[21] Kim, Y., Shin, H., Park, H. & Lim, J. (2008). Investigation into mechanical properties of austempered ductile cast iron (ADI) in accordance with austempering temperaturę. Materials Letters. 62(3), 357-360.
[22] Krzyńska, A. (2013). Searching for better properties of ADI. Archives of Foundry Engineering. 13(spec.1), 91-96.
[23] Krzyńska, A. & Kochański, A. (2014). Austenitization of Ferritic Ductil Iron. Archives of Foundry Engineering. 14(4), 49-54.
[24] Wilk-Kołodziejczyk, D., Mrzygłód, B., Regulski, K. & et al. (2016). Influence of process parameters on the properties of austempered ductile iron (ADI) examined with the use of data mining methods. Metalurgija. 55(4), 849-851.
[25] Khalaj, G., Pouraliakbary, H., Mamaghaniz, K. R. & et al. (2013). Modeling the correlation between heat treatment, chemical composition and bainite fraction of pipeline steels by means of artifcial neural networks. Neural Network World. 23, 351-367.
[26] Kiahosseini, S. R., Baygi, S., J., M., Khalaj, G. & et al. (2017). a study on structural, corrosion, and sensitization behavior of ultrafine and coarse grain 316 stainless steel processed by multiaxial forging and heat treatment. Journal of Materials Engineering and Performance. 27, 271-281.
[27] Polish Standard PN-EN 1563, Founding. Spheroidal graphite cast iron, (2000).
[28] Polish Standard PN-EN ISO 945-1: Microstructure of cast irons. Part 1. Graphite classification by visual analysis. November 2009. Correction PN-EN ISO 945-1:2009/AC. April 2010.
[29] Polish Standard PN-75/H-04661: Grey cast iron, nodular cast iron and malleable. Metallographic examinations. Determining of microstructure.
[30] Soiński, M.S., Jakubus, A. (2014). Initial assessment of abrasive wear resistance of austempered cast iron with vermicular graphite. Archives of Metallurgy and Materials. 59(3), 1073-1076.
[31] Kaczorowski, M. (2001). Structure and mechanical properties of ADI cast iron. Archive of Foundry. 1(1/2), 149-158.
[32] Myszka, D., Kaczorowski, M., Tybulczuk, J. & Kowalski, A. (2004). Parameters of the ADI cast iron production process and its mechanical properties. Archive of Foundry. 4(11), 355-364.
[33] Binczyk F., Gradoń P. (2010). Influence of heat treatment parameters on the formation of ADI cast iron microstructure. The work of IMŻ. 4, 5-14.
[34] Pietrowski, S. (1997). Ductile iron with the structure of bainitic ferrite with austenite or bainitic ferrite. Archives of Materials Science. 18, 253-273.
[35] Borowski, A.W. (1998). Synthetic ductile iron quenched with isothermal transformation (ADI). XXIII Scientific and Technical Symposium of the Foundry Engineering ITMat. Warsaw University of Technology, pp. 29.
[36] Wróbel, J. (2013). Cast iron thermal fatigue resistance ADI. Crakow: PhD thesis. AGH.
[37] Mierzwa, P. (2010). The effect of thermal treatment on the selected properties of cast iron with vermicular graphite. Doctoral thesis. Czestochowa University of Technology.
[38] Institute of Sustainable Technologies. User manual. Tribology set T-01M, mandrel-disc type. State Research Institute. Radom 2010.
[39] makland.com.pl. 28.02.2016, time 13.25.

Go to article

Authors and Affiliations

A. Jakubus
1
ORCID: ORCID

  1. The Jacob of Paradies University in Gorzów Wielkopolski, ul. Teatralna 25, 66-400 Gorzów Wielkopolski, Poland
Download PDF Download RIS Download Bibtex

Abstract

The presented article concerns the issue of supporting the ADI cast iron product manufacturing process and presents an IT system dedicated mainly to designers and technologists. Designers can be supported at the stage of selecting types of materials and technologies (including ADI cast iron) to produce products with required properties. Technologists can obtain support in determining the parameters (temperature and chemical) of the ADI cast iron manufacturing process in order to obtain products with specific properties. The system also contains an information resources (standards, documentation, examples) concerning ADI cast iron and products made of it. Examples of use by individual system users are presented as a case study.
Go to article

Authors and Affiliations

A. Opaliński
1
ORCID: ORCID
D. Wilk-Kołodziejczyk
1 2
ORCID: ORCID

  1. AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
  2. Łukasiewicz Research Network – Krakow Institute of Technology, 73 Zakopiańska Str., 30-418 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

This work deals with the effect of austempering temperature and time on the microstructure and content of retained austenite of a selected cast steel assigned as a material used for frogs in railway crossovers. Bainitic cast steel was austempered at 400°C, 450°C and 500°C for two selected times (0.5 h, 4.0 h) to study the evolution of the microstructure and retained austenite content. The microstructure was characterized by optical microscopy, X-ray diffraction analyses (XRD), and hardness tests. Phase transformations during and after austempering were determined by dilatometric methods.

The increase in isothermal temperature causes an increase in time to start of bainitic transformation from 0.25 to 1.5 s. However, another increase in temperature to 500°C shifts the incubation time to as much as 11 s. The time after which the transformations have ended at individual temperatures is similar and equal to about 300 s (6 min.). The dilatation effects are directly related to the amount of bainite formation. Based on these we can conclude that the temperature effect in the case of cast steel is inversely proportional to the amount of bainite formed. The largest effect can be distinguished in the case of the sample austempered at 400°C and the smallest at 500°C. Summarizing the dilatometric results, we can conclude that an increase in austempering temperature causes an increase in austenite stability. In other words, the chemical composition lowers (shifts to lower temperatures) the range of bainite transformation. It is possible that at higher austempering temperatures we will receive only stable austenite without any transformation. This is indicated by the hatched area in Figure 4b. This means that the heat treatment of cast steel into bainite is limited on both sides by martensitic transformation and the range of stable austenite. The paper attempts to estimate the content of retained austenite with X-ray diffraction.

Go to article

Authors and Affiliations

S. Parzych
R. Dziurka
ORCID: ORCID
M. Goły
B. Kulinowski
Download PDF Download RIS Download Bibtex

Abstract

A classical algorithm Tabu Search was compared with Q Learning (named learning) with regards to the scheduling problems in the Austempered Ductile Iron (ADI) manufacturing process. The first part comprised of a review of the literature concerning scheduling problems, machine learning and the ADI manufacturing process. Based on this, a simplified scheme of ADI production line was created, which a scheduling problem was described for. Moreover, a classic and training algorithm that is best suited to solve this scheduling problem was selected. In the second part, was made an implementation of chosen algorithms in Python programming language and the results were discussed. The most optimal algorithm to solve this problem was identified. In the end, all tests and their results for this project were presented.
Go to article

Bibliography

[1] Yang, L., Jiang, G., Chen, X., Li, G., Li, T. & Chen, X. (2019). Design of integrated steel production scheduling knowledge network system. Claster Comput. 10197-10206.
[2] Żurada, J. Barski, M., Jędruch, W. (1996). Artificial Neural Networks. Fundamentals of theory and application. Warszawa: PWN. (in Polish).
[3] Janiak, A. (2006). Scheduling in computer and manufacturing systems. Warszawa: Wydawnictwa Komunikacji i Łączności.
[4] Smutnicki, C. (2002). Scheduling algorithms. Warszawa: Akademicka Oficyna Wydawnicza EXIT. (in Polish).
[5] Coffman, E.G. (1980). Task scheduling theory. Warszawa: Wydawnictwa Naukowo-Techniczne. (in Polish).
[6] Janczarek, M. (2011). Managing production processes in the enterprise. Lublin: Lubelskie Towarzystwo Naukowe. (in Polish).
[7] Szeliga, M. (2019) Practical machine learning. Warszawa: PWN. (in Polish).
[8] Raschka, S. (2018) Python machine learning. Gliwice: Helion. (in Polish).
[9] Choi, H-S, Kim, J-S. & Lee, D-H. (2011). Real-time scheduling for reentrant hybrid flow shops: A decision tree based mechanism and its application to a TFT-LCD line. Expert System with Application. 38, 3514-3521.
[10] Agarwal, A., Pirkul, H. & Jacob, V.S. (2003). Augmented neutral network for task scheduling. European Journal of Operational Research. 151, 481-502.
[11] Jain, A.S. & Meeran, S. (1998). Jop-shop scheduling using neutral networks. International Journal of Production Research. 36(5), 1249-1272
[12] Fonseca-Reyna, Y.C., Martinez-Jimenez, Y. & Nowe, A. (2017). Q-Learning algorithm performance for m-machine, n-jobs flow shop scheduling problems to minimize makespan, Revista Investigacion Operacional. 38(3), 281-290.
[13] Dewi, Andriansyah, & Syahriza, (2019). Optimization of flow shop scheduling problem using classic algorithm: case study, IOP Conf. Series: Materials Science and Engineering 506.
[14] Putatunda, K. (2001) Development of austempered ductile cast iron (ADI) with simultaneous high yield strength and fracture toughness by a novel two-step austempering process. Material Science and Engineering A. 315, 70-80.
[15] Dayong Han, Hubei Key, Qiuhua Tang; Zikai Zhang; Jun Cao, (2020). Energy-efficient integration optimization of production scheduling and ladle dispatching in steelmaking plants. IEEE Access. 8, 176170-176187.
[16] Perzyk, M. (2017). The use of production data mining methods in the diagnosis of the causes of product defects and disruptions in the production process. Utrzymanie Ruchu. 4, 45-47. (in Polish).
[17] Perzyk, M., Dybowski, B. & Kozłowski, J. (2019). Introducing advanced data analytics in perspective of industry 4.0 in a die casting foundry. Archives of Foundry Engineering. 19(1), 53-57.
[18] Yescas, M. (2003). Prediction of the Vickers hardness in austempered ductile irons using neural networks. International Journal of Cast Metals Research. 15(5), 513-521.
[19] Report on the contract no. U / 227/2014 implemented at the Foundry Research Institute. (in Polish).
Go to article

Authors and Affiliations

D. Wilk-Kołodziejczyk
1 2
ORCID: ORCID
K. Chrzan
2
ORCID: ORCID
K. Jaśkowiec
2
ORCID: ORCID
Z. Pirowski
2
ORCID: ORCID
R. Żuczek
2
ORCID: ORCID
A. Bitka
2
ORCID: ORCID
D. Machulec
3
ORCID: ORCID

  1. AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
  2. Łukasiewicz Research Network – Krakow Institute of Technology, 73 Zakopiańska Str., 30-418 Kraków, Poland
  3. AGH University of Science and Technology, Kraków, Poland

This page uses 'cookies'. Learn more