Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

An as-cast aluminum billet with a diameter of 100 mm has been successfully prepared from aluminum scrap by using direct chill (DC) casting method. This study aims to investigate the microstructure and mechanical properties of such as-cast billets. Four locations along a cross-section of the as-cast billet radius were evaluated. The results show that the structures of the as-cast billet are a thin layer of coarse columnar grains at the solidified shell, feathery grains at the half radius of the billet, and coarse equiaxed grains at the billet center. The grain size tends to decrease from the center to the surface of the as-cast billet. The ultimate tensile strength (UTS) and the hardness values obtained from this research slightly increase from the center to the surface of the as-cast billet. The distribution of Mg, Fe, and Si elements over the cross-section of the as-cast billet is inhomogeneous. The segregation analysis shows that Si has negative segregation towards the surface, positive segregation at the middle, and negative segregation at the center of the as-cast billet. On the other hand, the Mg element is distributed uniformly in small quantities in the cross-section of the as-cast billet.
Go to article

Bibliography

[1] Raabe, D., Ponge, D., Uggowitzer, P., Roscher, M., Paolantonio, M., Liu, C., Antrekowitsch, H., Kozeschnik, E., Seidmann, D., Gault, B., De Geuser, F., Dechamps, A., Hutchinson, C., Liu, C., Li, Z., Prangnell, P., Robson, J., Shanthraj, P., Vakili, S. & Pogatscher, S. (2022). Making sustainable aluminum by recycling scrap: The science of “dirty” alloys. Progress in Materials Science. 128, 1-150, 100947. DOI:10.1016/j.pmatsci.2022.100947.
[2] Jamaly, N., Haghdadi, N. & Phillion, A.B. (2015). Microstructure, macrosegregation, and thermal analysis of direct chill cast AA5182 aluminum alloy. Journal of Materials Engineering and Performance. 24, 2067-2073. DOI: 10.1007/s11665-015-1480-7.
[3] Vieth, P., Borgert, T., Homberg, W. & Grundmeier, G. (2022). Assessment of mechanical and optical properties of Al 6060 alloy particles by removal of contaminants. Advanced Engineering Materials. 25(3), 2201081. DOI: 10.1002/adem.202201081.
[4] Wagstaff, R.S., Wagstaff, B.R. & Allanore, A. (2017). Tramp element accumulation and its effects on secondary phase particles. The Minerals, Metals & Materials Society. 1097-1103. DOI: 10.1007/978-3-319-51541-0.
[5] Soo, V.K., Peeters, J., Paraskevas, D., Compston, P., Doolan, M. & Duflou, J.R. (2018). Sustainable aluminium recycling of end-of-life products: A joining techniques perspective. Journal of Cleaner Production. 178, 119-132. DOI: 10.1016/j.jclepro.2017.12.235.
[6] Al-Helal, K., Patel, J.B., Scamans, G.M. & Fan, Z. (2020). Direct chill casting and extrusion of AA6111 aluminum alloy formulated from taint tabor scrap. Materials. 13(24), 5740, 1-11. DOI: 10.3390/ma13245740.
[7] Graedel, T.E., Allwood, J., Birat, J.P., Buchert, M., Hagelüken, C., Reck, B.K., Sibley, S.F. & Sonnemann, G. (2011). What do we know about metal recycling rates? Journal of Industrial Ecology. 15(3), 355-366. DOI: 10.1111/j.1530-9290.2011.00342.x.
[8] Silva, M.S., Barbosa, C., Acselrad, O. & Pereira, L.C. (2004). Effect of chemical composition variation on microstructure and mechanical properties of AA 6060 aluminum alloy. Journal of Materials Engineering and Performance. 13, 129–134. DOI: 10.1361/10599490418307.
[9] Al-Helal, K., Lazaro-Nebreda, Patel, J. & Scamans, G. (2021). High-shear de-gassing and de-ironing of an aluminum. Recycling. 6 (66), 2-10. https://doi.org/10.1111/j.1530-9290.2011.00342.x.
[10] Zhang, L., Gao, J., Damoah, L.N.W. & Robertson, D.G. (2012). Removal of iron from aluminum: A review. Mineral Processing and Extractive Metallurgy Review. 33(2), 99-157. DOI: 10.1080/08827508.2010.542211.
[11] Zhang, L., Lv, X., Torgerson, A.T. & Long, M. (2011). Removal of impurity elements from molten aluminum: A review. Mineral Processing and Extractive Metallurgy Review. 32(3), 150-228. DOI: 10.1080/08827508. 2010.483396.
[12] Paraskevas, D., Kellens, K., Dewulf, W. & Duflou, J.R. (2015). Environmental modelling of aluminium recycling: A Life Cycle Assessment tool for sustainable metal management. Journal of Cleaner Production. 105, 357-370. DOI: 10.1016/j.jclepro.2014.09.102.
[13] Eskin, D.G., Savran, V.I. & Katgerman, L. (2005). Effects of melt temperature and casting speed on the structure and defect formation during direct-chill casting of an Al-Cu alloy. Metallurgical and Materials Transactions A. 36, 1965-1976. DOI: 10.1007/s11661-005-0059-6.
[14] Nadella, R., Eskin, D.G., Du, Q. & Katgerman, L. (2008). Macrosegregation in direct-chill casting of aluminium alloys. Progress in Materials Science. 53(3), 421-480. DOI: 10.1016/j.pmatsci.2007.10.001.
[15] Eskin, D.G. (2014). Mechanisms and Control of Macrosegregation in DC Casting. Light Metals 2014. 855-860. DOI: 10.1002/9781118888438.ch143.
[16] Mortensen, D., M’Hamdi, M., Ellingsen, K., Tveito, K., Pedersen, L. & Grasmo, G. (2014). Macrosegregation modelling of DC-casting including grain motion and surface exudation. Light Metals 2014. 867-872. DOI: 10.1002/9781118888438.ch145.
[17] Jolly, M., & Katgerman, L. (2022). Modelling of defects in aluminium cast products. Progress in materials science. 123, 1-39. DOI: 10.1016/j.pmatsci.2021.100824
[18] Suyitno, Kool, W.H. & Katgerman, L. (2005). Hot tearing criteria evaluation for direct-chill casting of an Al-4.5 pct Cu alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 36(6), 1537-1546. DOI: 10.1007/s11661-005-0245-6.
[19] Eskin, D.G., Zuidema, J., Savran, V.I. & Katgerman, L. (2004). Structure formation and macrosegregation under different process conditions during DC casting. Materials Science and Engineering A. 384(1-2), 232-244. DOI: 10.1016/j.msea.2004.05.066.
[20] Lalpoor, M., Eskin, D. G., Ruvalcaba, D., Fjær, H.G., Ten Cate, A., Ontijt, N. & Katgerman, L. (2011). Cold cracking in DC-cast high strength aluminum alloy ingots: An intrinsic problem intensified by casting process parameters. Materials Science and Engineering A. 528(6), 2831-2842. DOI: 10.1016/j.msea.2010.12.040.
[21] Grandfield, J.F., Eskin, D.G, Bainbridge, I.F. (2013). Direct-chill casting of light alloys. United States of America: John Wiley & Sons, Inc., Hoboken, New Jersey. DOI: 10.1002/9781118690734.
[22] Wang, R., Zuo, Y., Zhu, Q., Liu, X. & Wang, J. (2022). Effect of temperature field on the porosity and mechanical properties of 2024 aluminum alloy prepared by direct chill casting with melt shearing. Journal of Materials Processing Technology. 307, 117687. DOI: 10.1016/j.jmatprotec. 2022.117687.
[23] Barekar, N.S., Skalicky, I., Barbatti, C., Fan, Z. & Jarrett, M. (2021). Enhancement of chip breakability of aluminium alloys by controlling the solidification during direct chill casting. Journal of Alloys and Compounds. 862, 158008. DOI: 10.1016/j.jallcom.2020.158008.
[24] ASTM E112. (2010). Standard test methods for determining average grain size E112-10. ASTM E112-10. 96(2004), 1-27. DOI: 10.1520/E0112-10.
[25] Jones, S., Rao, A.K.P., Patel, J.B., Scamans, G.M. Fan, Z. (2012). Microstructural evolution in intensively melt sheared direct chill cast Al-alloys. In the 13th International Conference on Aluminum Alloys (ICAA13) 2013, (pp. 91-96). DOI: 10.1007/978-3-319-48761-8_15.
[26] Suyitno, A., Eskin, D.G., Savran, V.I. & Katgerman, L. (2004). Effects of alloy composition and casting speed on structure formation and hot tearing during direct-chill casting of Al-Cu alloys. Metallurgical and Materials Transactions A. 35 A(11), 3551-3561. DOI: 10.1007/s11661-004-0192-7.
[27] Turchin, A.N., Zuijderwijk, M., Pool, J., Eskin, D.G. & Katgerman, L. (2007). Feathery grain growth during solidification under forced flow conditions. Acta Materialia. 55(11), 3795-3801. DOI: 10.1016/j.actamat.2007.02.030.
[28] Liu, X., Zhu, Q., Jia, T., Zhao, Z., Cui, J. & Zuo, Y. (2020). As-cast structure and temperature field of direct-chill cast 2024 alloy ingot at different casting speeds. Journal of Materials Engineering and Performance. 29(10), 6840-6848. DOI: 10.1007/s11665-020-05140-x.
[29] Tian L., Guo, Y., Li, J., Xia, F., Liang, M. & Bai, Y.(2018) Effects of solidification cooling rate on the microstructure and mechanical properties of a cast Al-Si-Cu-Mg-Ni piston alloy. Materials. 11(7), 3-11. DOI: 10.3390/ma11071230.
[30] Suyitno. (2016). Effect of composition on the microporosity, microstructure, and macrostructure in the start-up direct-chill casting billet of Al-Cu alloys. ARPN Journal of Engineering and Applied Sciences. 11(2), 962-967. https://doi.org/10.1007/s11661-004-0192-7.
[31] Zhu, C., Zhao, Z. hao, Zhu, Q. feng, Wang, G. song, Zuo, Y. bo, & Qin, G. wu. (2022). Structures and macrosegregation of a 2024 aluminum alloy fabricated by direct chill casting with double cooling field. China Foundry. 19(1), 1-8. DOI: 10.1007/s41230-022-1030-5.
[32] Zheng, X., Dong, J. & Wang, S. (2018). Microstructure and mechanical properties of Mg-Nd-Zn-Zr billet prepared by direct chill casting. Journal of Magnesium and Alloys. 6(1), 95-99. DOI: 10.1016/j.jma.2018.01.003.
[33] Arif, A.F.M., Akhtar, S.S. & Sheikh, A.K. (2009). Effect of Al-6063 billet quality on the service life of hot extrusion die: metallurgical and statistical investigation. Journal of Failure Analysis and Prevention. 9, 253-261. DOI: 10.1007/s11668-009-9231-4.
[34] Triantafyllidis, G.K., Kiligaridis, I., Zagkliveris, D.I., Orfanou, I., Spyridopoulou, S., Mitoudi-Vagourdi, E. & Semertzidou, S. (2015). Characterization of the A6060 Al alloy mainly by using the micro-hardness vickers test in order to optimize the industrial solutionizing conditions of the as-cast billets. Material. Science and Applications. 06(01), 86-94. DOI: 10.4236/msa.2015.61011.
[35] Asensio-Lozano J., Suárez-Peña, B. & Voort, G.F.V. (2014). Effect of processing steps on the mechanical properties and surface appearance of 6063 aluminium extruded products. Materials. 7(6), 4224-4242. DOI: 10.3390/ma7064224.
[36] Založnik, M. & Šarler, B. (2005). Modeling of macrosegregation in direct-chill casting of aluminum alloys: Estimating the influence of casting parameters. Materials Science and Engineering A. 413-414, 85-91. DOI: 10.1016/j.msea.2005.09.056.
Go to article

Authors and Affiliations

Kardo Rajagukguk
1 2 4
ORCID: ORCID
Suyitno Suyitno
3 4
Harwin Saptoadi
1
I. K. Indraswari Kusumaningtyas
1
Budi Arifvianto
1 4
Muslim Mahardika
1 4

  1. Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika 2, Yogyakarta 55281, Indonesia
  2. Department of Mechanical Engineering, Institut Teknologi Sumatera (ITERA), Jl. Terusan Ryacudu, South Lampung, Lampung 35365, Indonesia
  3. Department of Mechanical Engineering, Faculty of Engineering, Universitas Tidar, Jl. Kapten Suparman 39, North Magelang, 56116, Indonesia
  4. Center for Innovation of Medical Equipment and Devices (CIMEDs), Universitas Gadjah Mada, Jl. Teknika Utara Yogyakarta 55281, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

The influence of the chill on the AlSi7Mg alloy properties after the heat treatment T6, was realised in the system of the horizontally cast plate of dimensions 160x240 mm and thickness of 10 and 15 m. The cooling course in individual casting zones was recorded, which allowed to determine the solidification rate. Castings were subjected to the heat treatment T6 process. Several properties of the alloy such as: hardness BHN, density, tensile strength UTS, elongation %E were determined. The microstructure images were presented and the structural SDAS parameter determined. The performed investigations as well as the analysis of the results allowed to determine the influence zone of the chill. The research shows that there is a certain dependence between the thickness of the casting wall and the influence zone of the chill, being not less than 2g, where g is the casting wall thickness. The next aim of successive investigations will be finding the confirmation that there is the dependence between the casting wall thickness and the influence zone of the chill for other thicknesses of walls. We would like to prove that this principle is of a universal character.

Go to article

Authors and Affiliations

M. Piękoś
J. Zych
Download PDF Download RIS Download Bibtex

Abstract

False jagged-chickweed ( Lepyrodiclis holosteoides (C.A. Mey.) Fenzl ex Fisch. & C.A. Mey.) is an invasive weed species distributed in many regions of Iran. Scientific knowledge about the biology and ecology of false jagged-chickweed is rare. In a series of laboratory experiments, the effect of chilling treatments, potassium nitrate (KNO3), gibberellic acid (GA3), concentrations, temperature regimes, and sowing depths on seed germination and breaking seed dormancy of false jagged-chickweed was studied. In two field experiments the phenology of false jagged-chickweed and winter wheat ( Triticum aestivum) was also compared. Chilling treatment for 15 days, a KNO3 concentration of 30 μmolar and a GA3 concentration of 144 μmolar increased germination percentage and germination rate. However, chilling treatment for 15 days did not increase germination rate as well as the KNO3 and GA3 treatments. A quadratic polynomial model predicted that the optimum temperature giving the maximum germination percentage was 22°C. Seedlings emerged in a range of sowing depths from 0 to 8 cm, while no seedling emergence occurred at sowing depths greater than 10 cm. Based on a Gaussian model, the optimum sowing depth was predicted to be 3.9 cm. False jagged-chickweed required higher growing degree days (GDD) for seedling emergence than winter wheat, while the flowering stage of false jagged-chickweed occurred earlier than winter wheat. Results achieved in the present study are of interest not only for studying other life cycle aspects of this species but also as basic information for developing management strategies.
Go to article

Bibliography


Andersson L., Milberg P. 1998. Variation in seed dormancy among mother plants, populations and years of seed collection. Seed Science Research 8: 29–38. DOI: https://doi.org/10.1017/S0960258500003883
Anonymous G.P. 2020. Global Plants. Available on: https://plants.jstor.org/compilation/Lepyrodiclis.holosteoides
Anonymous USDA. 2020. Natural Resources Conservation Service. Available on: https://plants.usda.gov/home/plant Profile?symbol=LEHO7 [Accessed: 20 February 2021]
Bakar B.H., Nabi L.N.A. 2003. Seed germination, seedling establishment and growth patterns of wrinklegrass (Ischaemum rugosum Salisb.). Weed Biology and Management 3: 8−14. DOI: https://doi.org/10.1046/j.1445-6664.2003.00075.x
Begum M., Juraimi A.S., Amartalingam R., Bin Man A., Bin Syed Rastans S.O. 2006. The effects of sowing depth and flooding on the emergence, survival, and growth of Fimbristylis miliacea (L.) Vahl. Weed Biology and Management 6: 157−164. DOI: https://doi.org/10.1111/j.1445-6664.2006.00209.x
Benvenuti S., MacChia M., Miele S. 2001. Quantitative analysis of emergence of seedlings from buried weed seeds with increasing soil depth. Weed Science 49: 528−535. DOI: https://doi.org/10.2307/4046486
Deinhard R., Nazari S., Qorani Y. 2018. Estimation of cardinal temperatures of Lepyrodiclis holosteoides using regression models. Iranian Journal of Seed Science and Technology 7: 107−117. DOI: https://doi.org/10.22034/ijsst.2018.116531
Dorado J., Fernández-Quintanilla C., Grundy A.C. 2009. Germination patterns in naturally chilled and nonchilled seeds of fierce thornapple (Datura ferox) and velvetleaf (Abutilon theophrasti). Weed Science 57: 155−162. DOI: https://doi.org/10.1614/WS-08-122.1
Elahifard E., Derakhshan A. 2018. Asian spiderflower (Cleome viscosa) germination ecology in southern Iran. Weed Biology and Management 18: 110−117. DOI: https://doi.org/10.1111/wbm.12154
Foley M.E. 2004. Leafy spurge (Euphorbia esula) seed dormancy. Weed Science 52: 74−77. DOI: https://doi.org/10.1614/ P2002-146
Forte C.T., Nunes U.R., Filho A.C., Galon L., Chechi L., Roso R., Menegat A.D., Rossetto E.D.O., Franceschetti M.B. 2019. Chemical and environmental factors driving germination of Solanum americanum seeds. Weed Biology and Management 19: 113−120. DOI: https://doi.org/10.1111/wbm.12187
Golmohammadzadeh S., Zaefarian F., Rezvani M. 2015. Effects of some chemical factors, prechilling treatments and interactions on the seed dormancy-breaking of two Papaver species. Weed Biology and Management 15: 11−19. DOI: https://doi.org/10.1111/wbm.12056
Guillemin J.-P., Chauvel B. 2011. Effects of the seed weight and burial depth on the seed behavior of common ragweed (Ambrosia artemisiifolia). Weed Biology and Management 11: 217−223. DOI: https://doi.org/10.1111/j.1445-6664.2011.00423.x
Honarmand S.J., Nosratti I., Nazari K., Heidari H. 2016. Factors affecting the seed germination and seedling emergence of muskweed (Myagrum perfoliatum). Weed Biology and Management 16: 186−193. DOI: https://doi.org/10.1111/wbm.12110
Malik M.S., Norsworthy J.K., Riley M.B., Bridges W. 2010. Temperature and light requirements for wild radish (Raphanus raphanistrum) germination over a 12-month period following maturation. Weed Science 58: 136−140. DOI: https://doi.org/10.1614/WS-09-109.1
Marshall E.J.P. 2019. Reflections on 14 years as Editor-in-Chief. Weed Research 59: 1−4. DOI: https://doi.org/10.1111/wre.12350
McMaster G.S., Wilhelm W.W. 1997. Growing degree-days: one equation, two interpretations. Agricultural and Forest Meteorology 87: 291−300. DOI: http://dx.doi.org/10.1016/S0168-1923(97)00027-0
Mighani F., Khordostan Z. 2019. Study of some environmental factors on seed germination of Lepyrodiclis holosteoides. Applied Biology 31: 127−138. DOI: https://doi.org/10.22051/ jab.2019.4239
Minbashi Moeini M. 2011. Preparation of weed species distribution of Iran wheat fields with GIS. Iranian Research Institute Plant Protection (IRIPP), 300 pp. (in Persian)
Mirtaheri S.M., Vazan S., Baghestani M.A., Paknejad F., Tohidloo G. 2015. Investigation effect of flooding and burial depth on germination and percentage of Lepyrodiclis holosteoides Fenzl. Biological Forum 7: 1840−1844.
Puttha R., Goggi A.S., Gleason M.L., Jogloy S., Kesmala T., Vorasoot N., Banterng P., Patanothai A. 2014. Pre-chill with gibberellic acid overcomes seed dormancy of Jerusalem artichoke. Agronomy for Sustainable Development 34: 869−878. DOI: https://doi.org/10.1007/s13593-014-0213-x
R Core Team. 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available on: http://www.R-project.org/
Rabeler R.K. 1992. Lepyrodiclis holosteoides (Caryophyllaceae), “New” to North America. Madroño 39: 240−242.
Ranal M.A., Santana D.Gd. 2006. How and why to measure the germination process? Brazilian Journal of Botany 29: 1−11.
Ranal M.A., Santana D.Gd., Ferreira W.R., Mendes-Rodrigues C. 2009. Calculating germination measurements and organizing spreadsheets. Brazilian Journal of Botany 32: 849−855.
Rezvani M., Zaefarian F. 2016. Hoary cress (Cardaria draba (L.) Desv.) seed germination ecology, longevity and seedling emergence. Plant Species Biology 31: 280−287. DOI: https://doi.org/10.1111/1442-1984.12113
Rossini Oliva S., Leidi E.O., Valdés B. 2009. Germination responses of Erica andevalensis to different chemical and physical treatments. Ecological Research 24: 655. DOI: https://doi.org/10.1007/s11284-008-0536-7
Salazar-Gutierrez M., Johnson J., Chaves-Cordoba B., Hoogenboom G. 2013. Relationship of base temperature to development of winter wheat. International Journal of Plant Protection 7: 741−762.
Sarhaddi M., Rastgoo M., Ezadi Darbandi E., Ghanbari A., Baghestani M. 2019. The study of dormancy, germination and emergence biological aspects of jagged-chickweed (Lepyrodiclis holosteoides) seeds. Iranian Journal of Weed Science 15: 77−95. DOI: https://doi.org/10.22092/ijws.2019.1501.06
Tester M., Morris C. 2006. The penetration of light into soil. Plant, Cell & Environment 10: 281−286. DOI: https://doi.org/10.1111/j.1365-3040.1987.tb01607.x
Wei S., Zhang C., Chen X., Li X., Sui B., Huang H., Cui H., Liu Y., Zhang M., Guo F. 2010. Rapid and effective methods for breaking seed dormancy in buffalobur (Solanum rostratum). Weed Science 58: 141−146. DOI: https://doi.org/10.1614/WS-D-09-00005.1
Yaghoubi S., Aghaalikhani M., Ghelavand M., Zand E. 2011. Evaluation of important growth parameters of Lepyrodiclis (Lepyrodiclis holosteoides Fenzl.) under different light densities and nitrogen rates. Iranian Journal of Weed Science 7: 31−45.
Zand E., Nezamabadi N., Baghestani M.A., Shimi P., Mousavi S.K. 2017. A Guide to Chemical Control of Win Iran. JDM Press, Mashhad, Iran, 216 pp.
Go to article

Authors and Affiliations

Mehdi Minbashi Moeini
1
Eshagh Keshtkar
2
Hamidreza Sasanfar
1
Mohammad Ali Baghestani
1

  1. Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
  2. Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran

This page uses 'cookies'. Learn more