Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to analyze diesel fuel consumption in Poland and identification of the causes of changes in the needs of individual sectors of the economy for this type of fuel. Time range of the researches covered from 2004 to 2014. Data from the Central Statistical Office (CSO) were the source material. In the years 2004-2014 diesel consumption in Poland was 111 553 thousand tons. In 2014 domestic consumption of diesel fuel was 11 203 thousand tons and it was more than 2 times higher than the level of consumption of this fuel in 2004. The highest consumption of diesel in Poland in the period took place in 2012. The increase in the consumption of diesel fuel in Poland had benefited from increased demand for diesel in transport, which became a result of an increased amount of transport services. The share of transport in the consumption of diesel fuel in Poland for the period 2004- 2014 was about 75%. Another area, which consumes the largest quantity of DF in Poland is agriculture. Consumption of this fuel in agriculture in the years 2004- 2014 increased by 7%. DF consumption in industry and the manufacturing sector it was variable. DF biggest consumption in these sectors of the economy in the period was recorded in 2004. The analyzes did not allow to identify the specific causes of changes in the use of DF in the industry and manufacturing. In transport it showed a relationship between the consumption of diesel fuel and the amount of transport work and the transported cargo.
Go to article

Authors and Affiliations

Jacek Skudlarski
Michał Smykla
Katarzyna Botwińska
Roman Krygul
Download PDF Download RIS Download Bibtex

Abstract

This paper focuses on the radio direction finding (DF) in multipath environments. Based on the measurement results presented in the open literature, the authors analyse the influence of environment transmission properties on the spread of the signal reception angle. Parameters that define these properties are rms delay and angle spreads. For these parameters, the mutual relationship is determined. This relationship is the basis for assessment of the required number of bearings that minimize the influence of the environment on the accuracy of DF procedure. In the presented analysis, the statistical properties of the signal reception angle are approximated by the normal distribution. The number of bearings versus the rms delay spread is presented as the main objective of this paper. In addition, a methodology of the bearings’ spatial averaging that provides better estimation of the reception angle is shown.
Go to article

Authors and Affiliations

Cezary Ziółkowski
Jan Marcin Kelner
Download PDF Download RIS Download Bibtex

Abstract

Over the past two decades, numerous research projects have concentrated on cognitive radio wireless sensor networks (CR-WSNs) and their benefits. To tackle the problem of energy and spectrum shortfall in CR-WSNs, this research proposes an underpinning decode-&-forward (DF) relaying technique. Using the suggested time-slot architecture (TSA), this technique harvests energy from a multi-antenna power beam (PB) and delivers source information to the target utilizing energy-constrained secondary source and relay nodes. The study considers three proposed relay selection schemes: enhanced hybrid partial relay selection (E-HPRS), conventional opportunistic relay selection (C-ORS), and leading opportunistic relay selection (L-ORS). We present evidence for the sustainability of the suggested methods by examining the outage probability (OP) and throughput (TPT) under multiple primary users (PUs). These systems leverage time switching (TS) receiver design to increase end-to-end performance while taking into account the maximum interference constraint and transceiver hardware inadequacies. In order to assess the efficacy of the proposed methods, we derive the exact and asymptotic closed-form equations for OP and TPT & develop an understanding to learn how they affect the overall performance all across the Rayleigh fading channel. The results show that OP of the L-ORS protocol is 16% better than C-ORS and 75% better than E-HPRS in terms of transmitting SNR. The OP of L-ORS is 30% better than C-ORS and 55% better than E-HPRS in terms of hardware inadequacies at the destination. The L-ORS technique outperforms C-ORS and E-HPRS in terms of TPT by 4% and 11%, respectively.
Go to article

Authors and Affiliations

Mushtaq Muhammad Umer
1 2
ORCID: ORCID
Hong Jiang
1
Qiuyun Zhang
1
ORCID: ORCID
Liu ManLu
1
ORCID: ORCID
Muhammad Owais
1
ORCID: ORCID

  1. School of Information Engineering, Southwest University of Science & Technology (SWUST) Mianyang, 621010, P.R. China
  2. Department of Software Engineering, Mirpur University of Science & Technology (MUST), Mirpur, Azad Jammu & Kashmir, Pakistan
Download PDF Download RIS Download Bibtex

Abstract

In this study, we propose a cooling structure manufactured using a specialized three-dimensional (3D) printing design method. A cooling performance test system with complex geometry that used a thermoelectric module was manufactured using metal 3D printing. A test model was constructed by applying additive manufacturing simulation and computational fluid analysis techniques, and the correlation between each element and cooling efficiency was examined. In this study, the evaluation was conducted using a thermoelectric module base cooling efficiency measurement system. The contents were compared and analyzed by predicting the manufacturing possibility and cooling efficiency, through additive manufacturing simulation and computational fluid analysis techniques, respectively.
Go to article

Bibliography

[1] M .K. Thompson et al, Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints, CIRP Annuals 65, 737-760 (2016).
[2] M . Kumke, H. Watschke, T. Vietor, A new methodological framework for design for additive manufacturing, Virtual and Physical Prototyping 11, 3-19 (2016).
[3] L. Frizziero and et al., Design for Additive Manufacturing and Advanced Development Methods Applied to an Innovative Multifunctional Fan, Additive Manufacturing: Breakthoughs in Research and Practic 34 (2020).
[4] F .F. Wang, E. Parker, 3D printed micro-channel heat sink design considerations, 2016 International Symposium on 3D Power Electronics Integration and Manufacturing 16320350 (2016).
[5] Chunlei Wan and et al., Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dischalcogenide TiS2, Nature Materials 14, 622-627 (2015).
[6] M . Helou, S. Kara, Design, analysis and manufacturing of lattice structures: an overview, International Journal of Computer Integrated Manufacturing 31, 243-261 (2018).
[7] C. Dimitrios et al., Design for additive manufacturing (DfAM) of hot stamping dies with improved cooling performance under cyclic loading conditions, Additive Manufacturing 18, 101720 (2020).
[8] D. Yong et al., Thermoelectric materials and devices fabricated by additive manufacturing, Vacuum 178, 109384 (2020).
[9] S. Ning et al., 3D-printing of shape-controllable thermoelectric devices with enhanced output performance, Energy 195, 116892 (2020).
[10] S. Emrecan et al., Thermo-mechanical simulations of selective laser melting for AlSi10Mg alloy to predict the part-scale deformations, Progress in Additive Manufacturing 465-478 (2019).
Go to article

Authors and Affiliations

Yeong-Jin Woo
1 2
ORCID: ORCID
Dong-Ho Nam
1
ORCID: ORCID
Seok-Rok Lee
1
ORCID: ORCID
Eun-Ah Kim
1
ORCID: ORCID
Woo-Jin Lee
1
ORCID: ORCID
Dong-Yeol Yang
1
ORCID: ORCID
Ji-Hun Yu
1
ORCID: ORCID
Yong-Ho Park
2
ORCID: ORCID
Hak-Sung Lee
1
ORCID: ORCID

  1. Korea Institute of Materials Science, Changwon, 51508, Republic of Korea
  2. Pusan National University, Busan, 46241, Republic of Korea

This page uses 'cookies'. Learn more