Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a methodology for parametric fault clustering in analog electronic circuits with the use of a self-organizing artificial neural network. The method proposed here allows fast and efficient circuit diagnosis on the basis of time and/or frequency response which may lead to higher production yield. A self-organizing map (SOM) has been applied in order to cluster all circuit states into possible separate groups. So, it works as a feature selector and classifier. SOM can be fed by raw data (data comes from the time or frequency response) or some pre-processing is done at first. The author proposes conversion of a circuit response with the use of e.g. gradient and differentiation. The main goal of the SOM is to distribute all single faults on a two-dimensional map without state overlapping. The method is aimed for the development stage because the tolerances of elements are not taken into account, however single but parametric faults are considered. Efficiency analyses of fault clustering have been made on several examples e.g. a Sallen-Key BPF and an ECG amplifier. Testing procedure is performed in time and frequency domains for the Sallen-Key BPF with limited number of test points i.e. it is assumed that only input and output pins are available. A similar procedure has been applied to a real ECG amplifier in the frequency domain. Results prove a high efficiency in acceptable time which makes the method very convenient (easy and quick) as a first test in the development stage.

Go to article

Authors and Affiliations

Damian Grzechca
Download PDF Download RIS Download Bibtex

Abstract

This paper presents methods for optimal test frequencies search with the use of heuristic approaches. It includes a short summary of the analogue circuits fault diagnosis and brief introductions to the soft computing techniques like evolutionary computation and the fuzzy set theory. The reduction of both, test time and signal complexity are the main goals of developed methods. At the before test stage, a heuristic engine is applied for the principal frequency search. The methods produce a frequency set which can be used in the SBT diagnosis procedure. At the after test stage, only a few frequencies can be assembled instead of full amplitude response characteristic. There are ambiguity sets provided to avoid a fault tolerance masking effect.

Go to article

Authors and Affiliations

P. Jantos
D. Grzechca
T. Golonek
J. Rutkowski
Download PDF Download RIS Download Bibtex

Abstract

This article presents combined approach to analog electronic circuits testing by means of evolutionary methods (genetic algorithms) and using some aspects of information theory utilisation and wavelet transformation. Purpose is to find optimal excitation signal, which maximises probability of fault detection and location. This paper focuses on most difficult case where very few (usually only input and output) nodes of integrated circuit under test are available.

Go to article

Authors and Affiliations

Ł. Chruszczyk
D. Grzechca
J. Rutkowski
Download PDF Download RIS Download Bibtex

Abstract

The method described in this work allows to determine the optimal distribution of pulses of digital signal as well as the non-linear mathematical model based on a multiple regression statistical analysis, which are specialized to an effective and low-cost testing of functional parameters in analog electronic circuits. The aim of this concept is to simplify the process of analog circuit specification validation and minimize hardware implementation, time and memory requirements during the testing stage. This strategy requires simulations of the analyzed analog electronic circuit; however, this effort is done only once – before the testing stage. Then, validation of circuit specification can be obtained after a quick, very low-cost procedure without time consuming computations and without expensive external measuring equipment usage. The analyzed test signature is a time response of the analog circuit to the stream of digital pulses for which distributions were determined during evolutionary optimization cycles. Besides, evolutionary computations assure determination of the optimal form and size of the non-linear mathematical formula used to estimate specific functional parameters. Generally, the obtained mathematical model has a structure similar to the polynomial one with terms calculated by means of multiple regression procedure. However, a higher ordered polynomial usage makes it possible to reach non-linear estimation model that improves accuracy of circuit parametric identification. It should be noted that all the evolutionary calculations are made only at the before test stage and the main computational effort, for the analog circuit specification test design, is necessary only once. Such diagnosing system is fully synchronized by a global digital signal clock that precisely determines time points of the slopes of input excitation pulses as well as acquired output signature samples. Efficiency of the proposed technique is confirmed by results obtained for examples based on analog circuits used in previous (and other) publications as test benchmarks.

Go to article

Authors and Affiliations

T. Golonek
Ł. Chruszczyk
Download PDF Download RIS Download Bibtex

Abstract

This paper comprehensively presents key issues in design of an original optoelectronic measurement device built to assess amount of suspended particulate matter. The paper is introduced with a short explanation of concerns with a suspended particulate matter, what role it has in the air quality and how it affects health of human population. Then, problems of construction of the measurement device supported by a theoretical explanation on the basis of Mie theory are discussed. Subsequently, it is followed by an analysis of the device operation both in laboratory and in real conditions. Results obtained with the presented device are compared with the professional measurement equipment and an expensive, outdoor measurement station. Paper is concluded with observations of differences in spatio-temporal PM change at very close but significantly different city locations.

Go to article

Authors and Affiliations

L. Makowski
B. Dziadak
M. Suproniuk

This page uses 'cookies'. Learn more