Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

An experimental study was conducted in order to investigate two-phase flow regimes and fully developed pressure drop in a mini-size, horizontal rectangular channel. The test section was machined in the form of an impacting tee junction in an acrylic block (in order to facilitate visualization) with a rectangular cross-section of 1.87-mm height on 20-mm width on the inlet and outlet sides. Pressure drop measurement and flow regime identification were performed on all three sides of the junction. Air-water mixtures at 200 kPa (abs) and room temperature were used as the test fluids. Four flow regimes were identified visually: bubbly, plug, churn, and annular over the ranges of gas and liquid superficial velocities of 0.04 ≤ JG ≤ 10 m/s and 0.02 ≤ JL ≤ 0.7 m/s, respectively, and a flow regime map was developed. Accuracy of the pressure-measurement technique was validated with single-phase, laminar and turbulent, fully developed data. Two-phase experiments were conducted for eight different inlet conditions and various mass splits at the junction. Comparisons were conducted between the present data and former correlations for the fully developed two-phase pressure drop in rectangular channels with similar sizes. Wide deviations were found among these correlations, and the correlations that agreed best with the present data were identified.
Go to article

Authors and Affiliations

Amr Mohamed Elazhary
Hassan M. Soliman
Download PDF Download RIS Download Bibtex

Abstract

Heat transfer study from the heated square cylinder at a different orientation angle to the stream of nanofluids has been investigated numerically. CuO-based nanofluids were used to elucidate the significant effect of parameters: Reynolds number (1–40), nanoparticle volume fraction (0.00–0.05), the diameter of the NPs (30–100 mn) and the orientation of square cylinder (0–90°). The numerical results were expressed in terms of isotherm contours and average Nusselt number to explain the effect of relevant parameters. Over the range of conditions, the separation of the boundary layers of nanofluids increased with the size of the NPs as compared to pure water. NPs volume fraction and its size had a significant effect on heat transfer rate. The square cylinder of orientation angle (45°) gained a more efficient heat transfer cylinder than other orientation angles. Finally, the correlations were developed for the average Nusselt number in terms of the relevant parameters for 45° orientation of the cylinder for new applications.
Go to article

Authors and Affiliations

Jaspinder Kaur
1
Jatinder Kumar Ratan
1
Anurag Kumar Tiwari
1

  1. Dr B.R. Ambedkar National Institute of Technology Jalandar Punjab, Chemical Engineering Department, Pin code 144011, India
Download PDF Download RIS Download Bibtex

Abstract

Liquid-gas flows in pipelines appear in many industrial processes, e.g. in the nuclear, mining, and oil industry. The gamma-absorption technique is one of the methods that can be successfully applied to study such flows. This paper presents the use of the gamma-absorption method to determine the water-air flow parameters in a horizontal pipeline. Three flow types were studied in this work: plug, transitional plug-bubble, and bubble one. In the research, a radiometric set consisting of two Am-241 sources and two NaI(TI) scintillation detectors have been applied. Based on the analysis of the signals from both scintillation detectors, the gas phase velocity was calculated using the cross-correlation method (CCM). The signal from one detector was used to determine the void fraction and to recognise the flow regime. In the latter case, a Multi-Layer Perceptron-type artificial neural network (ANN) was applied. To reduce the number of signal features, the principal component analysis (PCA) was used. The expanded uncertainties of gas velocity and void fraction obtained for the flow types studied in this paper did not exceed 4.3% and 7.4% respectively. All three types of analyzed flows were recognised with 100% accuracy. Results of the experiments confirm the usefulness of the gamma-ray absorption method in combination with radiometric signal analysis by CCM and ANN with PCA for comprehensive analysis of liquid-gas flow in the pipeline.
Go to article

Authors and Affiliations

Robert Hanus
1
Marcin Zych
2
Volodymyr Mosorov
3
Anna Golijanek-Jędrzejczyk
4
Marek Jaszczur
5
Artur Andruszkiewicz
6

  1. Rzeszów University of Technology, Faculty of Electrical and Computer Engineering, Powstanców Warszawy 12, 35-959 Rzeszów, Poland
  2. AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Al. Mickiewicza 30, 30-059 Kraków, Poland
  3. Łódz University of Technology, Institute of Applied Computer Science, Zeromskiego 116, 90-537 Łódz, Poland
  4. Gdansk University of Technology, Faculty of Electrical and Control Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland
  5. AGH University of Science and Technology, Faculty of Energy and Fuels, Al. Mickiewicza 30, 30-059 Kraków, Poland
  6. Wrocław University of Science and Technology, Faculty of Mechanical and Power Engineering, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland

This page uses 'cookies'. Learn more