Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents an overview of basic concepts, features and difficulties of the boundary element method (BEM) and examples of its application to exterior and interior problems. The basic concepts of the BEM are explained firstly, and different methods for treating the non-uniqueness problem are described. The application of the BEM to half-space problems is feasible by considering a Green's Function that satisfies the boundary condition on the infinite plane. As a special interior problem, the sound field in an ultrasonic homogenizer is computed. A combination of the BEM and the finite element method (FEM) for treating the problem of acoustic-structure interaction is also described. Finally, variants of the BEM are presented, which can be applied to problems arising in flow acoustics.
Go to article

Authors and Affiliations

Rafael Piscoya
Martin Ochmann
Download PDF Download RIS Download Bibtex

Abstract

We study the exact and approximate controllabilities of the Langevin equation describing the Brownian motion of particles with a white noise. The Langevin equation is shown to describe also the bacterial run-and-tumble motion. Applying the Green’s function approach to the Green’s function representation of the Langevin equation, we obtain necessary and sufficient conditions for exact controllability in the form of a finite-dimensional problem of moments. For the approximate controllability, we obtain only sufficient conditions. The sets of resolving controls are characterized in both cases. The theoretical derivations are supported by a numerical analysis.

Go to article

Authors and Affiliations

Asatur Zh. Khurshudyan

This page uses 'cookies'. Learn more