Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The potential applications of loop heat pipes (LHPs) are the nuclear power space systems, fuel cell thermal management systems, waste heat recovery systems, medium temperature electronic systems, medium temperature military systems, among others. Such applications usually operate in temperature ranges between 500–700 K, hence it is necessary to develop an LHP system that will meet this requirement. Such a thermal management device require to meet various technical problems and challenges currently existing in the development of LHP working in medium temperatures, including: (1) selection of appropriate working fluid; (2) selection of appropriate LHP construction material; (3) construction of suitable test rig capable of testing at elevated temperatures; (4) development of new testing methods. Currently, there are no proven working fluids that can be used in LHPs in medium temperature ranges. Water can be applicable only at temperatures up to 570 K. Caesium can be applicable at temperatures above 670 K. Organic fluids usually tend to generate non-condensable gasses and/or decompose at elevated temperatures and their viscosity dramatically increases. For halides, most of them are very reactive or toxic and their full property data are not available or the majority of the physical properties are predicted, also live tests and their environmental impact data are not adequate. As for casing/LHP construction material, there are no full chemical compatibility tables with most of the medium temperature working fluids and the reactivity of fluids significantly limits the potential materials. Also, testing such an LHP is an endeavour as the reactivity of medium temperature fluids and the use of obscure metals create new challenges. Altogether creates multiple challenges in the development, testing, handling and operating of LHP in the medium temperature range.
Go to article

Bibliography

[1] Zohuri B.: Heat Pipe Design and Technology. Modern Applications for Practical Thermal Management (2nd Edn.). Springer, 2016.
[2] Zhang Y. (Ed.): Heat Pipes: Design, Applications and Technology. Nova, 2018.
[3] Anderson W.G., Bland J.J., Fershtater Y., Goncharov K.A., Nikitkin M., Juhasz A.: High-temperature loop heat pipes. IECEC AP-18, ASME 1995.
[4] Anderson W.G., Rosenfeld J.H., Angirasa D., Mi Y.: Evaluation of heat pipe working fluids in the temperature range 450 to 700 K. AIP Conf. Proc. 699(2004), 20.
[5] Anderson W.G., Bienert W.: Loop heat pipe radiator trade study for the 300– 550 K temperature range. AIP Conf. Proc. 746(2005), 946.
[6] Anderson W.G.: Intermediate temperature fluids for heat pipes and loop heat pipes. In: Proc. 5th Int. Energy Conversion Engineering Conf. Exhib. (IECEC), 25–27 June 2007, AIAA 2007–4836.
[7] Faghri A., Buchko M., Cao Y.: A study of high-temperature heat pipes with multiple heat sources and sinks: Part I – Experimental methodology and frozen startup profiles. J. Heat Transf. 113(1991), 4, 1003–1009.
[8] Faghri A., Buchko M., Cao Y.: A study of high-temperature heat pipes with multiple heat sources and sinks: Part II – Analysis of continuum transient and steadystate experimental data with numerical predictions. J. Heat Transf. 113(1991), 4, 1010–1016.
[9] https://www.1-act.com/merit-number-and-fluid-selection/ (accessed 10 Sept. 2021).
[10] NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP), Version 10. https://www.nist.gov/srd/refprop/ (accessed 10 Sept. 2021).
[11] Blauciak K., Szymanski P., Mikielewicz D.: The influence of loop heat pipe evaporator porous structure parameters and charge on its effectiveness for ethanol and water as working fluids. Materials 14(2021), 7029.
[12] Nikitkin M.N., Bienert W.B., Goncharov K.A.: Non condensable gases and loop heat pipe operation. SAE Tech. Pap. 981584. In: Proc. 28th Int. Conf. on Environmental Systems, 1998.
[13] Wrenn K.R., Wolf D., Kroliczek E.J.: Effect of non-condensible gas and evaporator mass on loop heat pipe performance. SAE Tech. Pap. 2000-01-2409. In: Proc. 30th Int. Conf. on Environmental Systems, 603–614, 2000.
[14] Ishikawa H., Ogushi T., Nomura T., Noda H., Kawasaki H., Yabe T.: Heat transfer characteristics of a reservoir embedded loop heat pipe (2nd report, influence of noncondensable gas on heat transfer characteristics). Heat Transf. Asian Res. 36(2007), 8, 459–473.
[15] Singh R., Akbarzadeh A., Mochizuki M.: Operational characteristics of the miniature loop heat pipe with non-condensable gases. Int. J. Heat Mass Tran. 53(2010), 17–18, 3471–3482.
[16] He J., Lin G., Bai L., Miao J., Zhang H.: Effect of non-condensable gas on the operation of a loop heat pipe. Int. J. Heat Mass Tran. 70(2014), 449–462.
[17] Prado-Montes P.: Development of an elevated temperature loop heat pipe for space applications and investigation of non-condensable gas impact on its performance. PhD thesis, Polytechnic University of Madrid, Madrid 2014.
[18] Devarakonda A., Xiong D., Beach E.D.: Intermediate temperature water heat pipe tests. AIP Conf. Proc. 746(2005), 158.
[19] Mishkinis D., Prado P., Sanz R., Radkov A., Torres A., Tjiptajardja T.: Loop heat pipe working fluids for intermediate temperature range: from –40°C to +125°C. In: Proc. 1st. Int. Conf. on Heat Pipes for Space Applications, Moscow, Sept. 2009.
[20] Mikielewicz D, Błauciak K.: Investigation of the influence of capilary effect on operation of the loop heat pipe. Arch. Thermodyn. 35(2014), 3, 59–80.
Go to article

Authors and Affiliations

Paweł Szymański
1
Dariusz Mikielewicz
1

  1. Gdansk University of Technology, Faculty of Mechanical Engineering and Ship Technology, Narutowicza 11/12,80-233 Gdansk, Poland
Download PDF Download RIS Download Bibtex

Abstract

The performance of ten wickless heat pipes without adiabatic sections is investigated experimentally at low heat inputs 120 to 2000 W/m2 for use in solar water heaters. Three heat pipe diameter groups were tested, namely 16, 22, and 28.5 mm. Each group had evaporator lengths of 1150, 1300, and 1550 mm, respectively, with an extra evaporator length of 1800 mm added to the second group. The condenser section length of all heat pipes was 200 mm. Ethanol, methanol, and acetone were utilized as working fluids, at inventory of 25%, 50%, 70%, and 90% by evaporator volume respectively. The 22 mm diameter pipes were tested at inclination angles 30◦, 45◦, and 60◦. Other diameter groups were tested at 45◦ only. Experiments revealed increased surface temperatures and heat transfer coefficients with increased pipe diameter and evaporator length, and that increased working fluid inventory caused pronounced reduction in evaporator surface temperature accompanied by improved heat transfer coefficient to reach maximum values at 50% inventory for the selected fluids. Violent noisy shocks were observed with 70% and 90% inventories with the tested heat pipes and the selected working fluids with heat flux inputs from 320–1900 W/m2. These shocks significantly affected the heat pipes heat transfer capability and operation stability. Experiments revealed a 45◦ and 50% optimum inclination angle of fill charge ratio respectively, and that wickless heat pipes can be satisfactorily used in solar applications. The effect of evaporator length and heat pipe diameter on the performance was included in data correlations.

Go to article

Authors and Affiliations

Hassan Naji Salman Al-Joboory
Download PDF Download RIS Download Bibtex

Abstract

In the 21st century the way to increase the efficiency of new sources of energy is directly related with extended exploration of renewable energy. This modern tendency ensures the fuel economy needs to be realized with nature protection. The increasing of new power sources efficiency (cogeneration, trigeneration systems, fuel cells, photovoltaic systems) can be performed by application of solid sorption heat pumps, regrigerators, heat and cold accumulators, heat transformers, natural gas and hydrogen storage systems and efficient heat exchangers.

Go to article

Authors and Affiliations

L. Vasiliev
O. Filatova
A. Tsitovich
Download PDF Download RIS Download Bibtex

Abstract

An experimental investigation was performed on the thermal performance and heat transfer characteristics of acetone/zirconia nanofluid in a straight (rod) gravity-assisted heat pipe. The heat pipe was fabricated from copper with a diameter of 15 mm, evaporator-condenser length of 100 mm and adiabatic length of 50 mm. The zirconia-acetone nanofluid was prepared at 0.05–0.15% wt. Influence of heat flux applied to the evaporator, filling ratio, tilt angle and mass concentration of nanofluid on the heat transfer coefficient of heat pipe was investigated. Results showed that the use of nanofluid increases the heat transfer coefficient while decreasing the thermal resistance of the heat pipe. However, for the filling ratio and tilt angle values, the heat transfer coefficient initially increases with an increase in both. However, from a specific value, which was 0.65 for filling ratio and 60–65 deg for tilt angle, the heat transfer coefficient was suppressed. This was attributed to the limitation in the internal space of the heat pipe and also the accumulation of working fluid inside the bottom of the heat pipe due to the large tilt angle. Overall, zirconia-acetone showed a great potential to increase the thermal performance of the heat pipe.

Go to article

Authors and Affiliations

Amin Abdolhossein Zadeh
Shima Nakhjavani
Download PDF Download RIS Download Bibtex

Abstract

A domestic hot water (DHW) system has been modernized in a multi-family house, located in the southeastern part of Poland, inhabited by 105 people. The existing heating system (2 gas boilers) was extended by a solar system consisting of 32 evacuated tube collectors with a heat pipe (the absorber area: 38.72 m2). On the basis of the system performance data, the ecological effect of the modernization, expressed in avoided CO2 emission, was estimated. The use of the solar thermal system allows CO2 emissions to be reduced up to 4.4 Mg annually. When analyzing the environmental effects of the application of the solar system, the production cycle of the most material-consuming components, namely: DHW storage tank and solar collectors, was taken into account. To further reduce CO2 emission, a photovoltaic installation (PV), supplying electric power to the pump-control system of the solar thermal system has been proposed. In the Matlab computing environment, based on the solar installation measurement data and the data of the total radiation intensity measurement, the area of photovoltaic panels and battery capacity has been optimized. It has been shown that the photovoltaic panel of approx. 1.8 m2 and 12 V battery capacity of approx. 21 Ah gives the greatest ecological effects in the form of the lowest CO2 emission. If a photovoltaic system was added it could reduce emissions by up to an additional 160 kg per year. The above calculations take also emissions resulting from the production of PV panels and batteries into account.

Go to article

Authors and Affiliations

Piotr Olczak
ORCID: ORCID
Małgorzata Olek
Dominik Kryzia
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The present work involved an extensive outdoor performance testing program of a solar water heating system that consists of four evacuated tube solar collectors incorporating four wickless heat pipes integrated to a storage tank. Tests were conducted under the weather conditions of Baghdad, Iraq. The heat pipes were of 22 mm diameter, 1800 mm evaporator length and 200 mm condenser length. Three heat pipe working fluids were employed, ethanol, methanol, and acetone at an inventory of 50% by volume of the heat pipe evaporator sections. The system was tested outdoors with various load conditions. Results showed that the system performance was not sensitive to the type of heat pipe working fluid employed here. Improved overall efficiency of the solar system was obtained with hot water withdrawal (load conditions) by 14%. A theoretical analysis was formulated for the solar system performance using an energy balance based iterative electrical analogy formulation to compare the experimental temperature behavior and energy output with theoretical predictions. Good agreement of 8% was obtained between theoretical and experimental values.

Go to article

Authors and Affiliations

Hassan Naji Salman Al-Joboory
Download PDF Download RIS Download Bibtex

Abstract

Concentrator photovoltaic (CPV) systems have proven the capability of competing with traditional photovoltaic (PV) systems due to their high efficiency and low area occupancy. Such CPV systems require efficient heat removal auxiliary systems, especially for medium and high optical concentration ratios. Operating a CPV system under a high optical concentration (ratio > 200 X) might require active cooling techniques, which have high operating costs and maintenance. On the other hand, heat pipes (HPs) are widely used in electronic devices for cooling purposes. This work discusses the possibility of operating a CPV system coupled with HPs as a passive cooling technique. Two different HPs with different lengths are used to compare cooling efficiency. Each HP length was tested either in a single or double configuration. Long HPs showed better heat removal compared to a traditional fin-cooling system. CVP cooling with HP systems enhanced the entire electrical output of the cell, mainly at high optical concentration ratios.
Go to article

Authors and Affiliations

Mohammed Al Turkestani
1
ORCID: ORCID
Mohamed Sabry
1 2
ORCID: ORCID
Abdelrahman Lashin
1 3
ORCID: ORCID

  1. Physics Department, College of Science, Umm Al Qura University, Makkah, Kingdom of Saudi Arabia
  2. Solar Physics Lab, National Research Institute of Astronomy and Geophysics, Cairo, Egypt
  3. Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt

This page uses 'cookies'. Learn more