Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article presents the method of magnetron sputtering for the deposition of conductive emitter coatings in semiconductor structures. The layers were applied to a silicon substrate. For optical investigations, borosilicate glasses were used. The obtained layers were subjected to both optical and electrical characterisation, as well as structural investigations. The layers on silicon substrates were tested with the four-point probe to find the dependence of resistivity on the layer thickness. The analysis of the elemental composition of the layer was conducted using a scanning electron microscope equipped with an EDS system. The morphology of the layers was examined with the atomic force microscope (AFM) of the scanning electron microscope (SEM) and the structures with the use of X-ray diffraction (XRD). The thickness of the manufactured layers was estimated by ellipsometry. The composition was controlled by selecting the target and the conditions of the application, i.e. the composition of the plasma atmosphere and the power of the magnetrons. Based on the obtained results, this article aims to investigate the influence of the manufacturing method and the selected process parameter on the optical properties of thin films, which should be characterised by the highest possible value of the transmission coefficient (>85–90%) and high electrical conductivity.
Go to article

Bibliography

  1.  L. Żukowska, J. Mikuła, M. Staszuk, and M. Musztyfaga-Staszuk, “Structure And Properties Of PVD Coatings Deposited On Cermets,” Arch. Metall. Mater., vol. 60, no. 2, pp. 727–733, 2015, doi: 10.1515/amm-2015-0198.
  2.  M. Staszuk et al., “Investigations of TiO2, Ti/TiO2, and Ti/TiO2/Ti/TiO2 coatings produced by ALD and PVD methods on Mg-(Li)-Al-RE alloys substrates,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, p. 137549, 2021 (in print), doi: 10.24425/bpasts.2021.137549.
  3.  Y.-S. Cho, M. Han, and S. H. Woo, “Electrospinning of Antimony Doped Tin Oxide Nanoparticle Dispersion for Transparent and Conductive Films,” Arch. Metall. Mater., vol. 65, no. 4, pp.  1345–1350, 2020, doi: 10.24425/amm.2020.133697.
  4.  R.A. Maniyara, V.K. Mkhitaryan, T.L. Chen, D.S. Ghosh, and V. Pruneri, “An antireflection transparent conductor with ultralow optical loss (<2%) and electrical resistance,” Nat. Commun., vol. 7, pp. 13771, 2016, doi: 10.1038/ncomms13771.
  5.  M. Kuc et al., “ ITO layer as an optical confinement for nitride edge-emitting lasers,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 1, 2020, doi: 10.24425/bpasts.2020.131834.
  6.  Y. Cui and C.M. Lieber, “Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks,” Science, vol. 291, pp. 851–853, 2001, doi: 10.1126/science.291.5505.851.
  7.  J. Kryłow, J. Oleński, Z. Sawicki, and A. Tumański, “Doping of semiconductors, Technological processes in semiconductor electronics,” Scientific and Technical Publishing House, Warsaw 1980 [in Polish].
  8.  Ş. Ţălu, S. Kulesza, M. Bramowicz, K. Stępień and D. Dastan, “Analysis of the Surface Microtexture of Sputtered Indium Tin Oxide Thin Films,” Arch. Metall. Mater., vol. 66, no. 2, pp.  443–450, 2021, doi: 10.24425/amm.2021.135877.
  9.  Y.S. Hsu and S.K. Gandhi, “The Effect of Phosphorus Doping on Tin Oxide Films Made by the Oxidation of Phosphine and Tetramethyltin II. Electrical Properties J. Electrochem. Soc. II,” Sol. State Sci. Technol., vol. 127, p. 1592, 1980.
  10.  T. Nakahara and H. Koda, Chemical Sensor Technology. Ed., N. Emazoe,” Elsevier, New York, 1991, vol. 3, p. 19.
  11.  S.-J. Hong, S.-H. Song, B.J. Kim, J.-Y. Lee, and Y.-S Kim, “ITO Nanoparticles Reused from ITO Scraps and Their Applications to Sputtering Target for Transparent Conductive Electrode Layer,” Nano Converg., vol. 4, no 23, p. 23, 2017.
  12.  Q. Li, E. Gao, and A.X. Wang, “Ultra-Compact and Broadband Electro-Absorption Modulator Using an Epsilon-near-Zero Conductive Oxide,” Photonics Res., vol. 6, no. 4, pp. 277–281, 2018, doi: 10.1364/PRJ.6.000277.
  13.  K. Ellmer, “Past Achievements and Future Challenges in the Development of Optically Transparent Electrodes,” Nat. Photonics, vol. 6, pp. 809–817, 2012, doi: 10.1038/nphoton.2012.282.
  14.  Q. Li et al., “3D ITO-Nanowire Networks as Transparent Electrode for All-Terrain Substrate,” Sci. Rep., vol.  9, no. 4983, 2019.
  15.  C. Guillén and J. Herrero, “Comparison study of ITO thin films deposited by sputtering at room temperature onto polymer and glass substrates,” Thin Solid Films, 480–481, pp. 129–132, 2005, doi: 10.1016/j.tsf.2004.11.040.
  16.  C. Guillén and J. Herrero, “Polycrystalline growth and recrystallisation process in sputtering ITO thin films,” Thin Solid Films, vol. 510, pp. 260–264, 2006.
  17.  H. Morikawa and M. Fujita, “Crystallisation and electrical property change on the annealing of amorphous indium-oxide and indium tin oxide films,” Thin Solid Films, vol. 359, pp. 61–67, 2000.
  18.  F. Kurdesau, G. Khripunov, A.F da Cunha, M Kaelin, and A.N Tiwari, “Comparative study of ITO layers deposited by DC and RF magnetron sputtering at room temperature,” J. Non-Crystall. Solids, vol. 352, pp. 1466–1470, 2006, doi: 10.1016/j.jnoncrysol.2005.11.088.
  19.  C.L. Tien, H.Y. Lin, C.K. Chang, and C.J. Tang, “Effect of Oxygen Flow Rate on the Optical, Electrical, and Mechanical Properties of DC Sputtering ITO Thin Films,” Adv. Condens. Matter Phys., 2019, p. 2647282, 2019.
  20.  J. Txintxurreta, E. G-Berasategui, R. Ortiz, O. Hernández, L. Mendizábal, and J. Barriga, “Indium Tin Oxide Thin Film Deposition by Magnetron Sputtering at Room Temperature for the Manufacturing of Efficient Transparent Heaters,” Coatings, vol. 11, p.  92, 2021, doi: 10.3390/coatings11010092.
  21.  R.K. Tyagi, P. Saxena, A. Vashisth, and S. Mehndiratta, “PVD based thin film deposition methods and characterisation/ property of different compositional coatings- a critical analysis,” Materials Today: Proceedings 2nd International Conference, vol.  38, pp. 259–264, 2020.
  22.  P. Sawicka-Chudy et al., “Characteristics of TiO2, Cu2O, and TiO2/Cu2O thin films for application in PV devices, AIP Advances, vol. 9, p. 055206, 2019, doi: 10.1063/1.5093037.
  23.  B. Wicher et al., “Structure and Electrical Resistivity Dependence of Molybdenum Thin Films Deposited by DC Modulated Pulsed Magnetron Sputtering,” Arch. Metall. Mater., vol. 63, no. 3, pp. 1339–1344, 2018, doi: 10.24425/123809.
  24.  L.J. Meng, E. Liang, J. Gao, V. Teixeira, and M.P. dos Santos, “Study of indium tin oxide thin films deposited on acrylics substrates by ion beam assisted deposition technique,” J. Nanosci. Nanotechnol., vol. 9, pp. 4151–4155, 2009, doi: 10.1166/jnn.2009.m24.
  25.  J.C. Manifacier, M. De Murcia, J.P. Fillard, and E. Vicario, “Optical and electrical properties of SnO2 thin films in relation to their stoichiometric deviation and their crystalline structure,” Thin Solid Films, vol. 41, pp. 127–144, 1977.
  26.  M. Iftikhar, I.M. Ali, and M.A. Al-Jenabi, “Structural and Optical Properties of In2O3 and Indium Tin Oxide Thin Films,” J. Unive. Anbar Pure Sci., vol. 11, no.1, pp.  39–46, 2017.
  27.  H. Kim et al., “Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices,” J. Appl. Phys., vol. 86, pp. 6451–6461, 1999, doi: 10.1063/1.371708.
  28.  N. Nosidlak, “Application of polymer systems as materials in photovoltaic cells and electroluminescent diodes”. PhD Thesis, Krakow 2013.
  29.  L.F.J. Piper et al., “In2O3 is found about 2.8 eV below the Fermi level,” Appl. Phys. Lett., vol. 94, p. 022105, 2009.
Go to article

Authors and Affiliations

Małgorzata Musztyfaga-Staszuk
1
Dušan Pudiš
2
Robert Socha
3
Katarzyna Gawlińska-Nęcek
4
Piotr Panek
4

  1. Silesian University of Technology, Welding Department, ul. Konarskiego 18A, 44-100 Gliwice, Poland
  2. Faculty of Faculty of Electrical Engineering and Information Technology, Department of Physics, Zilina, Slovakia
  3. Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Krakow, Poland
  4. Institute of Metallurgy and Materials Science PAS, ul. Reymonta 25, 30-059 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents research on the deposition of an indium tin oxide (ITO) layer which may act as a recombination layer in a silicon/perovskite tandem solar cell. ITO was deposited by magnetron sputtering on a highly porous surface of silicon etched by the metal-assisted etching method (MAE) for texturing as nano and microwires. The homogeneity of the ITO layer and the degree of coverage of the silicon wires were assessed using electron microscopy imaging techniques. The quality of the deposited layer was specified, and problems related to both the presence of a porous substrate and the deposition method were determined. The presence of a characteristic structure of the deposited ITO layer resembling a "match" in shape was demonstrated. Due to the specificity of the porous layer of silicon wires, the ITO layer should not exceed 80 nm. Additionally, to avoid differences in ITO thickness at the top and base of the silicon wire, the layer should be no thicker than 40 nm for the given deposition parameters.
Go to article

Authors and Affiliations

Grażyna Kulesza-Matlak
1
ORCID: ORCID
Marek Szindler
2
ORCID: ORCID
Magdalena M. Szindler
2
ORCID: ORCID
Anna Sypień
1
ORCID: ORCID
Łukasz Major
1
ORCID: ORCID
Kazimierz Drabczyk
1
ORCID: ORCID

  1. Institute of Metallurgy and Materials Science, Polish Academy of Sciences, ul. W. Reymonta 25, 30-059 Kraków, Poland
  2. Faculty of Mechanical Engineering, Silesian University of Technology, ul. Akademicka 2A, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of a numerical analysis of nitride-based edge-emitting lasers with an InGaN/GaN active region designed for continuous wave room temperature emission of green and blue light. The main goal was to investigate whether the indium thin oxide (ITO) layer can serve as an effective optical confinement improving operation of these devices. Simulations were performed with the aid of a self-consistent thermal-electrical-optical model. Results obtained for green- and blue-emitting lasers were compared. The ITO layer in the p-type cladding was found to effectively help confine the laser mode in the active regions of the devices and to decrease the threshold current density.

Go to article

Authors and Affiliations

M. Kuc
A.K. Sokół
Ł. Piskorski
M. Dems
M. Wasiak
R.P. Sarzała
T. Czyszanowski
Download PDF Download RIS Download Bibtex

Abstract

The present research work involves the study of the 3-D surface microtexture of sputtered indium tin oxide (ITO) prepared on glass substrates by DC magnetron at room temperature. The samples were annealed at 450°C in air and were distributed into five groups, dependent on ambient combinations applied, as follows: I group, using argon (Ar); II group, using argon with oxygen (Ar+O2); III group, using argon with oxygen and nitrogen (Ar+O2+N2); IV group, using argon with oxygen and hydrogen (Ar+O2+H2); and V group, using argon with oxygen, nitrogen, and hydrogen (Ar+O2+N2+H2). The characterization of the ITO thin film surface microtexture was carried out by atomic force microscopy (AFM). The AFM images were stereometrically quantitatively analyzed to obtain statistical parameters, by ISO 25178-2: 2012 and ASME B46.1-2009. The results have shown that the 3-D surface microtexture parameters change in accordance with different fabrication ambient combinations.
Go to article

Authors and Affiliations

Ş. Ţălu
1
ORCID: ORCID
S. Kulesza
2
ORCID: ORCID
M. Bramowicz
2
ORCID: ORCID
K. Stępień
3
ORCID: ORCID
D. Dastan
4

  1. Technical University of Cluj-Napoca, The Directorate of Research, Development and Innovation Management (DMCDI), Cluj-Napoca, 400020, Romania
  2. University of Warmia and Mazury in Olsztyn, Faculty of Technical Sciences, 11 Oczapowskiego Str., 10-719 Olsztyn, Poland
  3. Kielce University of Technology, Faculty of Mechatronics and Mechanical Engineering, Aleja 1000-lecia Państwa Polskiego 7, 25-314 Kielce, Poland
  4. Georgia Institute of Technology, School of Materials Science and Engineering, Atlanta, Georgia 30332, USA

This page uses 'cookies'. Learn more