Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

An LLCL-filter is becoming more attractive than an LCL-filter as the interface between the grid-tied inverter and the grid due to possibility of reducing the copper and the magnetic materials. The efficiency of the LLCL-filter based single-phase grid-tied inverter also excites interests for many applications. The operation of the switches of the VSI is various with different modulation methods, which lead to different efficiencies for such a single-phase grid-tied inverter system, and therefore important research has been carried out on the effect of the choice of PWM schemes. Then power losses and efficiencies of the LLCL-filter and the LCL-filter based single-phase grid-tied inverters are analyzed and compared under the discontinuous unipolar, the dual-buck and the bipolar modulations. Results show that the efficiency of LLCL-filter based inverter system is higher than the LCL- filter based independent on the modulation method adopted. Experiments on a 2 kW prototype are in good agreement with results of the theoretical analysis.

Go to article

Authors and Affiliations

Weimin Wu
Min Huang
Frede Blaabjerg
Download PDF Download RIS Download Bibtex

Abstract

One of the main problems of multivariable cost functions in model predictive control is the choice of weighting factors. Two finite control set model predictive control algorithms, applied to the three-phase active rectifier with an LCL filter, are described in the paper. The investigated algorithms, i.e. PCicuc and PCigicuc, implement multivariable approaches applying line (grid) current, capacitor voltage and converter current. The main problem dealt with in the paper is the choice of optimum values of the cost function weighting factors. The values of the factors calculated using the method proposed in the paper are very close to the values represented by the lowest THDi of the line current. Moreover, simulations verifying the equations used in the prediction of controlled values, i.e. line current, capacitor voltage and converter current, are presented. Both simulation and experimental results are presented to verify effectiveness of the investigated control strategies under change of the load (P = 5 kW and 2.5 kW), during transient states, under unbalanced and balanced line voltage.

Go to article

Authors and Affiliations

P. Falkowski
A. Sikorski
K. Kulikowski
M. Korzeniewski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a concept of a control system for a high-frequency three-phase PWM grid-tied converter (3x400 V / 50 Hz) that performs functions of a 10-kW DC power supply with voltage range of 600÷800 V and of a reactive power compensator. Simulation tests (in PLECS) allowed proper selection of semiconductor switches between fast IGBTs and silicon carbide MOSFETs. As the main criterion minimum amount of power losses in semiconductor devices was adopted. Switching frequency of at least 40 kHz was used with the aim of minimizing size of passive filters (chokes, capacitors) both on the AC side and on the DC side. Simulation results have been confirmed in experimental studies of the PWM converter, the power factor of which (inductive and capacitive) could be regulated in range from 0.7 to 1.0 with THDi of line currents below 5% and energy efficiency of approximately 98.5%. The control system was implemented in Texas Instruments TMS320F28377S microcontroller.

Go to article

Authors and Affiliations

Roman Barlik
Piotr Grzejszczak
Bernard Leszczyński
Marek Szymczak
Download PDF Download RIS Download Bibtex

Abstract

Most of the basic control methods of the grid-connected converter (GCC) are defined to work with a sine wave grid voltage. In that case if the grid voltage is distorted by higher harmonics, the grid current may be distorted too, which, in consequence, may increase the value of the THD of the grid voltage. The paper deals with an improved finite control set model predictive control (FCS-MPC) method of an LCL-filtered GCC operating under distorted grid conditions. The proposed method utilizes supplementary grid current feedback to calculate the reference converter current. The introduced signal allows to effectively improve the operation when the grid is subject to harmonic distortion. The paper shows a simulation analysis of the proposed control scheme operating with and without additional feedback under grid distortions. To validate the practical feasibility of the proposed method an algorithm was implemented on a 32-bit microcontroller STM32F7 with a floating point unit to control a 10 kW GCC. The laboratory test setup provided experimental results showing properties of the introduced control scheme.

Go to article

Authors and Affiliations

P. Falkowski
A. Godlewska

This page uses 'cookies'. Learn more