Search results

Filters

  • Journals

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In many physical experiments, linear frequency modulated (LFM) signals are widely used to probe objects in different environments, from outer-space to underwater. These signals allow a significant improvement in measurement resolution, even when the observation distance is great. For example, using LFM probe signals in underwater investigations enables discovery of even small objects covered by bottom sediments.

Recognition of LFM (chirp) signals depends on their compression based on matched filtering. This work presents two simple solutions to improve the resolution of the short chirp signals recognition. These methods are effective only if synchronization between the signal and matched filter (MF) is obtained. This work describes both the aforementioned methods and a method of minimizing the effects of the lack of synchronization.

The proposed matched filtering method, with the use of n parallel MFs and other techniques, allows only one sample to be obtained in the main lobe and to accurately locate its position in the appropriate sampling period Ts with accuracy Ts/n. These approaches are appropriate for use in probe signal processing.

Go to article

Authors and Affiliations

Włodzimierz Pogribny
Tadeusz Leszczyński
Download PDF Download RIS Download Bibtex

Abstract

Noise-like binary sequences combined with signals with linear frequency modulation might be successfully used to increase the reliability of the recognition of both probe and communication signals in the presence of natural and artificial interference. To identify such formed sequences the usage of the two-step matched filtering was suggested and the probabilistic model of the recognition of noise-like code sequences transferred by LFM signals was developed.

Go to article

Authors and Affiliations

Tadeusz Leszczyński
Download PDF Download RIS Download Bibtex

Abstract

The article presents methods that help in the elimination of mutual clutter as well as the consequences of two FM sounding signal sonars operating in the same body of water and frequency band. An in-depth analysis of mutual clutter was carried out. The effects of sounding signal differentiation were determined, as was the Doppler effect on mutual clutter suppression. One of the methods analysed is of particular interest in a situation in which collaborating sonars are operating in opposite frequency modulation directions. This method is effective for both linear and hyperbolic frequency modulations. A formula was derived, identifying exactly how much quantities of clutter may be lessened. The work included comprehensive computer simulations and measurements as well as tests in real-life conditions.

Go to article

Authors and Affiliations

Jacek Marszal
Mariusz Rudnicki
Andrzej Jedel
Roman Salamon
Iwona Kochańska

This page uses 'cookies'. Learn more