Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Keywords Mo2C MoO3 CO NaCl
Download PDF Download RIS Download Bibtex

Abstract

In this work, influence of NaCl additive on the transformation process of MoO3 to Mo2C under pure CO atmosphere in the range of room temperature to 1170 K was investigated. The results showed that transformation of MoO3 to Mo2C can be roughly divided into two stages: the reduction of MoO3 to MoO2 (the first stage) and the carburization of MoO2 to Mo2C (the second stage). As to the first stage, it was found that increasing the content of NaCl (from 0 to 0.5 wt.%) was beneficial for the increase of reaction rate due to the nucleation effect; while when the content of NaCl increased to 2 wt.%, the reaction rate will be decreased in turn. As to the second stage, the results showed that reaction rate was decreased with the increase of NaCl, which may be due to the formation of low-melting point eutectic. The work also found that morphology of as-prepared Mo2C was irregular and particle size of it was gradually increased with increasing the NaCl content. According to the results, the possible reaction mechanism was proposed.
Go to article

Authors and Affiliations

Biao-Hua Que
1
ORCID: ORCID
Lu Wang
1 2
ORCID: ORCID
Bao Wang
3
ORCID: ORCID
Yi Chen
3
ORCID: ORCID
Zheng-Liang Xue
3
ORCID: ORCID

  1. Wuhan University of Science And Technology, Hubei Provincial Key Laboratory For New Processes of Ironmaking and Steelmaking, Wuhan 430081, China
  2. Foshan (Southern China) Institute For New Materials, Foshan 528200, Guangdong, China
  3. Wuhan University of Science and Technology, The State Key Laboratory of Refractories and Metallurgy, Wuhan 430081, China
Download PDF Download RIS Download Bibtex

Abstract

MoO3 thick film was manufactured by using a thermal spray process (Atmospheric Plasma Spray, or APS) and its microstructure, phase composition and properties of the coating layer were investigated. Initial powder feedstock was composed of an orthorhombic α-MoO3 phase, and the average powder particle size was 6.7 μm. As a result of the APS coating process, a MoO3 coating layer with a thickness of about 90 μm was obtained. Phase transformation occurred during the process, and the coating layer consisted of not only α-MoO3 but also β-MoO3, MoO2. Phase transformation could be due to the rapid cooling that occurred during the process. The properties of the coating layer were evaluated using a nano indentation test. Hardness and reduced modulus were obtained as 0.47 GPa and 1.4 GPa, respectively. Based on the above results, the possibility of manufacturing a MoO3 thick coating layer using thermal spray is presented.
Go to article

Authors and Affiliations

Yu-Jin Hwang
1
ORCID: ORCID
Kyu-Sik Kim
1 2
ORCID: ORCID
Jae-Sung Park
3
Kee-Ahn Lee
1
ORCID: ORCID

  1. Inha University, Department of Materials Science and Engineering, Incheon, Korea
  2. Agency for Defense Development, Daejeon, Korea
  3. LT Metal, Seoul, Korea

This page uses 'cookies'. Learn more