Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper proposes a method for adjusting light waves propagating in systems composed of photonic fibers, light sources and detection elements. The paper presents the properties of these connections in terms of the loss of signal transmission. Different fiber core areas were analyzed, and measurements of the mode-field diameters (MFDs) of selected fiber structures are presented. The study analyzed two types of LMA (Large Mode Area) fiber structures, and the mode-field diameters of these structures were measured on the basis of the radiation distribution obtained under near-field conditions. The results are compared to the values obtained for a SMF-28 single-mode fiber. The LMA structures analyzed in the paper are characterized by low sensitivity of the MFD parameter to the length of transmitted waves, which creates the possibility of their use as intermediate fibers when connecting optical fibers of different diameters. In the wavelength range from 800 nm to 1600 nm, a 3.5% MFD change was observed for the first investigated LMA structure, and a 1% change was observed for the second. In addition, measurements of the mode-field diameters were also made using the transverse offset method for comparison of the results.

Go to article

Authors and Affiliations

Krzysztof Skorupski
Download PDF Download RIS Download Bibtex

Abstract

The evolution of microstructured optical fibers with hexagonal array (H-MOFs) of air-holes rooted in the background of undoped silica has led to the realization of an ideal host for encouraging and technologically entitled optical properties. We focus to explore the divergence of radiation into free space from the end-facet of solid-core H-MOFs by using the improved theoretical model. Also, we investigated the wavelength dependence of beam divergence angle for principal core mode of H-MOFs under step-index fiber approximation (SIFA). Experimental results have been included for comparison.

Go to article

Authors and Affiliations

D.K. Sharma
S.M. Tripathi

This page uses 'cookies'. Learn more