Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Neodymium-Iron-Boron (Nd-Fe-B) magnets are considered to have the highest energy density, and their applications include electric motors, generators, hard disc drives, and MRI. It is well known that a fiber structure with a high aspect ratio and the large specific surface area has the potential to overcome the limitations, such as inhomogeneous structures and the difficulty in alignment of easy axis, associated with such magnets obtained by conventional methods. In this work, a suitable heat-treatment procedure based on single-step and multistep treatments to synthesize sound electrospun Nd-Fe-B-O nanofibers of Φ572 nm was investigated. The single-step heat-treated (directly heat-treated at 800°C for 2 h in air) samples disintegrated along with the residual organic compounds, whereas the multistep heat-treated (sequential three-step heat-treated including three steps;: dehydration (250°C for 30 min in an inert atmosphere), debinding (650°C for 30 min in air), and calcination (800°C for 1 h in air)) fibers maintained sound fibrous morphology without any organic impurities. They could maintain such fibrous morphologies during the dehydration and debinding steps because of the relatively low internal pressures of water vapor and polymer, respectively. In addition, the NdFeO3 alloying phase was dominant in the multistep heat-treated fibers due to the removal of barriers to mass transfer in the interparticles.

Go to article

Authors and Affiliations

Eun Ju Jeon
Nu Si A. Eom
Jimin Lee
Bin Lee
Hye Mi Cho
Ji Sun On
Yong-Ho Choa
Bum Sung Kim
Download PDF Download RIS Download Bibtex

Abstract

Rare earth Nd-Fe-B, a widely used magnet composition, was synthesized in a shape of powders using gas atomization, a rapid solidification based process. The microstructure and properties were investigated in accordance with solidification rate and densification. Detailed microstructural characterization was performed by using scanning electron microscope (SEM) and the structural properties were measured by using X-ray diffraction. Iron in the form of α-Fe phase was observed in powder of about 30 μm. It was expected that fraction of Nd2Fe14B phase increased rapidly with decrease in powder size, on the other hand that of α-Fe phase was decreased. Nd-rich phase diffused from grain boundary to particle boundary after hot deformation due to capillary action. The coercivity of the alloy decreased with increase in powder size. After hot deformation, Nd2Fe14B phase tend to align to c-axis.

Go to article

Authors and Affiliations

Ju-Young Cho
Sardar Farhat Abbas
Yong-Ho Choa
Taek-Soo Kim
Download PDF Download RIS Download Bibtex

Abstract

We investigated the effect of pre-sintering process on the penetration behavior of Dy in a NdFeB sintered magnet which was grain boundary diffusion treated with Cu/Al mixed Dy source. The pre-sintering of a magnet was performed at 900oC in vacuum and then the pre-sintered body was dipped in the solutions of DyH2, DyH2 + Cu, and DyH2 + Al, respectively. The dipped pre-sintered body were then fully sintered 4 hours at 1060oC followed by a subsequent annealing. The pre-sintering apparently improved the diffusivity of Dy atoms. The penetration of Dy into the magnet extended almost to 2,000 μm from the surface, about four times deeper than that of the normally sintered and diffusion treated one, when the DyH2 + Al solution was used as a Dy source. However, the resulting increase of coercivity was about 4 kOe, somewhat lower than that of the normally treated one, mostly due to excessive oxide formation that hindered to make a continuous Nd-rich grain boundary phase and a core-shell type structure.

Go to article

Authors and Affiliations

M.W. Lee
J.K. Lee
T.S. Jang
Download PDF Download RIS Download Bibtex

Abstract

NdFeB anisotropic sintered permanent magnets are typically fabricated by strip casting or melt spinning. In this study, the plastic deformability of an NdFeB alloy was investigated to study the possibility of fabricating anisotropic sintered magnets using gas atomized powders. The results show that the stoichiometric composition Nd12Fe82B6 softens at high temperatures. The aspect ratio and orientation factor of Nd12Fe82B6 billets after plastic deformation were found to increase with increasing plastic deformation temperature, particularly above 800℃. This confirms that softening at high temperatures can lead to plastic deformation of Nd2Fe14B hard magnetic phases.

Go to article

Authors and Affiliations

Ju-Young Cho
ORCID: ORCID
Yong-Ho Choa
ORCID: ORCID
Sun-Woo Nam
ORCID: ORCID
Rasheed Mohammad Zarar
Taek-Soo Kim
ORCID: ORCID

This page uses 'cookies'. Learn more