Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 10
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The results of investigations of the rheological properties of typical ceramic slurries used in the investment casting technology – the lost

wax technology are presented in the paper. Flow curves in the wide range of shear velocity were made. Moreover, viscosity of ceramic

slurries depending on shearing stresses was specified. Tests were performed under conditions of three different temperatures 25, 30 and

35oC, which are typical and important in the viewpoint of making ceramic slurries in the investment casting technology.

In the light of the performed investigations can be said that the belonging in group of Newtonian or Non – Newtonian fluid is dependent

on content of solid phase (addition of aluminum oxide) in the whole composition of liquid ceramic slurries.

Go to article

Authors and Affiliations

J. Kolczyk
Ł. Jamrozowicz
N. Kaźnica
Download PDF Download RIS Download Bibtex

Abstract

This study is devoted to the instantaneous acoustic heating of a shear-thinning fluid. Apparent viscosity of a shear-thinning fluid depends on the shear rate. That feature distinguishes it from a viscous Newtonian fluid. The special linear combination of conservation equations in the differential form makes it possible to derive dynamic equations governing both the sound and non-wave entropy mode induced in the field of sound. These equations are valid in a weakly nonlinear flow of a shear-thinning fluid over an unbounded volume. They both are instantaneous, and do not require a periodic sound. An example of a sound waveform with a piecewise constant shear rate is considered as a source of acoustic heating.

Go to article

Authors and Affiliations

Anna Perelomova
Download PDF Download RIS Download Bibtex

Abstract

The aim of this paper is to investigate the effect of thermal stratification together with variable viscosity on free convection flow of non- Newtonian fluids along a nonisothermal semi infinite vertical plate embedded in a saturated porous medium. The governing equations of continuity, momentum and energy are transformed into nonlinear ordinary differential equations using similarity transformations and then solved by using the Runge-Kutta-Gill method along with shooting technique. Governing parameters for the problem under study are the variable viscosity, thermal stratification parameter, non-Newtonian parameter and the power-law index parameter.The velocity and temperature distributions are presented and discussed. The Nusselt number is also derived and discussed numerically.
Go to article

Authors and Affiliations

M.B.K. Moorthy
K. Senthilvadivu
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of experimental research of pressure drop and heat transfer coefficients of ice slurry during its flow through tubes of rectangular and slit cross-sections. Moreover, the work discusses the influence of solid particles, type of motion and cross-section on the changes in the pressure drop and heat transfer coefficient. The analysis presented in the paper allows for identification of the criterial relations used to calculate the Fanning factor and the Nusselt number for laminar and turbulent flow, taking into account elements such as phase change, which accompanies the heat transfer process. Ice slurry flow is treated as a generalized flow of a non-Newtonian fluid.
Go to article

Authors and Affiliations

Beata Niezgoda-Żelasko
Jerzy Żelasko
Download PDF Download RIS Download Bibtex

Abstract

The present work deals with agitation of non-Newtonian fluids in a stirred vessel by Scaba impellers. A commercial CFD package (CFX 12.0) was used to solve the 3D hydrodynamics and to characterise at every point flow patterns especially in the region swept by the impeller. A shear thinning fluid with yield stress was modelled. The influence of agitator speed, impeller location and blade size on the fluid flow and power consumption was investigated. The results obtained are compared with available experimental data and a good agreement is observed. It was found that an increase in blade size is beneficial to enlargement of the well stirred region, but that results in an increased power consumption. A short distance between the impeller and the tank walls limits the flow around the agitator and yields higher power consumption. Thus, the precise middle of the tank is the most appropriate position for this kind of impeller.

Go to article

Authors and Affiliations

Houari Ameur
Mohamed Bouzit
Mustapha Helmaoui
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to determine the influence of selected nanoparticles, namely diesel exhaust particles, Arizona test dust, silver and gold on the rheology of human blood. The rheological properties of human blood were determined with the use of a modular rheometer, at two various temperatures, namely 36.6◦C and 40◦C. Experimental results were used to calculate the constants in blood constitutive equations. The considered models were power-law, Casson and Cross ones. The obtained results demonstrate that the presence of different nanoparticles in the blood may have different effect on its apparent viscosity depending on the type of particles and shear rate.
Go to article

Authors and Affiliations

Urszula Michalczuk
1
Rafał Przekop
1
Arkadiusz Moskal
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

This work is an attempt to study the behaviour of fluid in the mixing vessel with a two-bladed or four-bladed impeller. The working fluid is complex, of a shear-thinning type and the Oswald model is used to describe the fluid viscosity. The study was accomplishedby numerically solving the governing equations of momentum and continuity. These equations were solved for the following range of conditions: 50–1000 for the Reynolds number, 0–0.15 for the baffle length ratio, and the number of impeller blades 2 and 4. The simulations were done for the steady state and laminar regime. The results show that the increase in baffle length (by increasing the ratio baffle length ratio) decreases the fluid velocity in the vessel. Increasing the speed of rotation of the impeller and/or increasing the number of blades improves the mixing process. Also, the length of the baffles does not affect the consumed power.
Go to article

Authors and Affiliations

Malika Seddik Bouchouicha
1
Houssem Laidoudi
1
Souad Hassouni
1
Oluwole Daniel Makinde
2

  1. University of Science and Technology of Oran Mohamed-Boudiaf, Faculty of Mechanical Engineering, BP 1505, El-Menaouer, Oran, 31000, Algeria
  2. Stellenbosch University, Faculty of Military Science, Private Bag X2, Saldanha 7395, South Africa
Download PDF Download RIS Download Bibtex

Abstract

This study presents general properties of dough as demonstrated within the period of its technological usefulness (i.e, approx. up to 30 min). Eight (8) types of dough made of four (4) types of flour were subjected to experimental tests. During examination of dough, treated as a non-Newtonian fluid, its non-Newtonian (apparent) viscosity was determined as well as its correlations with other rheological quantities. The results of the study were shown in diagrams presenting the course of particular quantities and model correlations of examined types of dough. These relations were used to determine one general expression modeling rheological properties of examined doughs.
Go to article

Authors and Affiliations

Feliks Chwarścianek
Download PDF Download RIS Download Bibtex

Abstract

Sewage sludge is a two-phase mixture, generated during the treatment of domestic sewage in waste water treatment plants. It consists of 90-99% water and an accumulation of settleable solids. mainly organic that are removed during primary, secondary or advanced wastewater treatment processes. The hydration of the sludge is one of its main properties which determines sludge management and waste disposal cost. The flow properties of the sewage sludge, such as settling properties and concentration of solids. may affect its hydraulics. Application of rheology in wastewater treatment is determined by the flow character of the sludge. The basic purpose of the investigation was to define the rheological properties of sludge taken from secondary settling tanks in a typical municipal wastewater treatment plant. A laboratory investigation was conducted using a coaxial cylinder with a rotating torque and gravimetric concentration of the investigated sludge ranged from 2.21 to 6.56%. Approximation was made after transforming the pseudo-curve obtained from the measurements into the true flow curve, which was made according to the equation provided by Krieger, Elrod, Maron and Svec. In order to describe rheological characteristics the 3-parameter Herschel-Bulkley model was applied. The correlation between rheological parameters -r , k, n and concentration C was calculated as well as between periods of time when the samples of sludge were 'taken. The research has allowed calculating the dimension of the main transport installation pumping sludge and optimizing the pump discharge pressure, when transporting viscous sludge in pipelines. Determination of rheological parameters, especially yield stress tr), is important in sludge management, for instance in designing parameters transporting, storing, spreading.
Go to article

Authors and Affiliations

Beata Malczewska

This page uses 'cookies'. Learn more