Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The abundant use of solar energy in Indonesia has the potential to become electrical energy in a microgrid system. Currently the use of renewable energy sources (RESs) in Indonesia is increasing in line with the reduction of fossil fuels. This paper proposes a new microgrid DC configuration and designs a centralized control strategy to manage the power flow from renewable energy sources and the load side. The proposed design uses three PV arrays (300 Wp PV module) with a multi-battery storage system (MBSS), storage (200 Ah battery). Centralized control in the study used an outseal programmable logic controller (PLC). In this study, the load on the microgrid is twenty housing, so that the use of electrical energy for one day is 146.360 Wh. It is estimated that in one month it takes 4.390.800 Wh of electrical energy. The new DC microgrid configuration uses a hybrid configuration, namely the DC coupling and AC coupling configurations.The results of the study show that the DC microgrid hybrid configuration with centralized control is able to alternately regulate the energy flow from the PV array and MBSS. The proposed system has an efficiency of 98% higher than the previous DC microgrid control strategy and configuration models.
Go to article

Authors and Affiliations

Adhi Kusmantoro
1
Irna Farikhah
2

  1. Department of Electrical Engineering, Universitas PGRI Semarang Jl. Sidodadi Timur No. 24 – Dr. Cipto, Semarang 50125, Indonesia
  2. Department of Mechanical Engineering, Universitas PGRI Semarang, Jl. Sidodadi Timur No. 24 – Dr. Cipto, Semarang 50125, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

Solar energy is widely available in nature and electricity can be easily extracted using solar PV cells. A fuel cell being reliable and environment friendly becomes a good choice for the backup so as to compensate for continuously varying solar irradiation. This paper presents simple control schemes for power management of the DC microgrid consisting of PV modules and fuel cell as energy sources and a hydrogen electrolyzer system for storing the excess power generated. The supercapacitor bank is used as a short term energy storage device for providing the energy buffer whenever sudden fluctuations occur in the input power and the load demand. A new power control strategy is developed for a hydrogen storage system. The performance of the system is assessed with and without the supercapacitor bank and the results are compared. A comparative study of the voltage regulation of the microgrid is presented with the controller of the supercapacitor bank, realized using a traditional PI controller and an intelligent fuzzy logic controller.

Go to article

Authors and Affiliations

Pramod Bhat Nempu
N. Sabhahit Jayalakshmi
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a new grid integration control scheme that employs spider monkey optimization technique for maximum power point tracking and Lattice Levenberg Marquardt Recursive estimation with a hysteresis current controller for controlling voltage source inverter. This control scheme is applied to a PV system integrated to a three phase grid to achieve effective grid synchronization. To verify the efficacy of the proposed control scheme, simulations were performed. From the simulation results it is observed that the proposed controller provides excellent control performance such as reducing THD of the grid current to 1.75%.
Go to article

Bibliography

[1] I. Dincer: Renewable energy and sustainable development: a crucial review. Renewable and Sustainable Energy Reviews, 4(2), (2000), 157–175, DOI: 10.1016/S1364-0321(99)00011-8.
[2] S. Gulkowski, J.V.M. Diez, J.A. Tejero, and G. Nofuentes: Computational modeling and experimental analysis of heterojunction with intrinsic thin-layer photovoltaic module under different environmental conditions. Energy, 172, (2019), 380–390, DOI: 10.1016/j.energy.2019.01.107.
[3] M. Bahrami, et al.: Hybrid maximum power point tracking algorithm with improved dynamic performance. Renewable Energy, 130, (2019), 982–991, DOI: 10.1016/j.renene.2018.07.020.
[4] K.V. Singh, Krishna, H. Bansal, and D. Singh: A comprehensive review on hybrid electric vehicles: architectures and components. Journal of Modern Transportation, 27, (2019), 1–31, DOI: 10.1007/s40534-019-0184-3.
[5] S. Pradhan, et al.: Performance Improvement of Grid-Integrated Solar PV System Using DNLMS Control Algorithm. IEEE Transactions on Industry Applications, 55(1), (2019), 78–91, DOI: 10.1109/TIA.2018.2863652.
[6] S. Negari and D. Xu: Utilizing a Lagrangian approach to compute maximum fault current in hybrid AC–DC distribution grids withMMCinterface. High Voltage, 4(1), (2019), 18–27, DOI: 10.1049/hve.2018.5087.
[7] V.T. Tran et al.: Mitigation of Solar PV Intermittency Using Ramp-Rate Control of Energy Buffer Unit. IEEE Transactions on Energy Conversion, 34(1), (2019), 435–445, DOI: 10.1109/TEC.2018.2875701.
[8] A. Kihal, et al.: An improved MPPT scheme employing adaptive integral derivative sliding mode control for photovoltaic systems under fast irradiation changes. ISA Transactions, 87, (2019), 297–306, DOI: 10.1016/j.isatra.2018.11.020.
[9] A.M. Jadhav, N.R. Patne, and J.M. Guerrero: A novel approach to neighborhood fair energy trading in a distribution network of multiple microgrid clusters. IEEE Transactions on Industrial Electronics, 66(2), (2019), 1520– 1531, DOI: 10.1109/TIE.2018.2815945.
[10] A. Fragaki, T. Markvart, and G. Laskos: All UK electricity supplied by wind and photovoltaics – The 30–30 rule. Energy, 169, (2019), 228–237, DOI: 10.1016/j.energy.2018.11.151.
[11] S.Z. Ahmed, et al.: Power quality enhancement by using D-FACTS systems applied to distributed generation. International Journal of Power Electronics and Drive Systems, 10(1), (2019), 330, DOI: 10.11591/ijpeds.v10.i1.pp330-341.
[12] H.H. Alhelou, et al.: A Survey on Power System Blackout and Cascading Events: Research Motivations and Challenges. Energies. 12(4), (2019), 1– 28, DOI: 10.3390/en12040682.
[13] M. Badoni, A. Singh, and B. Singh: Implementation of Immune Feedback Control Algorithm for Distribution Static Compensator. IEEE Transactions on Industry Applications, 55(1), (2019), 918–927, DOI: 10.1109/TIA.2018.2867328.
[14] S.R. Das, et al.: Performance evaluation of multilevel inverter based hybrid active filter using soft computing techniques. Evolutionary Intelligence (2019), 1–11, DOI: 10.1007/s12065-019-00217-6.
[15] F. Chishti, S. Murshid, and B. Singh: LMMN Based Adaptive Control for Power Quality Improvement of Grid Intertie Wind-PV System. IEEE Transactions on Industrial Informatics, 15(9), (2019), 4900–4912, DOI: 10.1109/TII.2019.2897165.
[16] S. Pradhan, et al.: Performance Improvement of Grid-Integrated Solar PV System Using DNLMS Control Algorithm. IEEE Transactions on Industry Applications, 55(1), (2019), 78–91, DOI: 10.1109/IICPE.2016.8079455.
[17] V. Jain, I. Hussain, and B. Singh: A HTF-Based Higher-Order Adaptive Control of Single-Stage Grid-Interfaced PV System. IEEE Transactions on Industry Applications, 55(2), (2019), 1873–1881, DOI: 10.1109/TIA.2018.2878186.
[18] N. Kumar, B. Singh, B. Ketan Panigrahi and L. Xu: Leaky Least Logarithmic Absolute Difference Based Control Algorithm and Learning Based InC MPPT Technique for Grid Integrated PV System. IEEE Transactions on Industrial Electronics. 66(11), (2019), 9003–9012, DOI: 10.1109/TIE.2018.2890497.
[19] P. Shah, I. Hussain, and B. Singh: Single-Stage SECS Interfaced with Grid Using ISOGI-FLL- Based Control Algorithm. IEEE Transactions on Industry Applications, 55(1), (2019), 701–711, DOI: 10.1109/TIA.2018.2869880.
[20] V. Jain and B. Singh: A Multiple Improved Notch Filter-Based Control for a Single-StagePVSystem Tied to aWeak Grid. IEEE Transactions on Sustainable Energy, 10(1), (2019), 238–247, DOI: 10.1109/TSTE.2018.2831704.
[21] N. Mohan and T. M. Undeland: Power electronics: converters, applications, and design. John Wiley & Sons, 2007.
[22] M. Badoni, et al.: Grid interfaced solar photovoltaic system using ZA-LMS based control algorithm. Electric Power Systems Research, 160, (2018), 261–272, DOI: 10.1016/j.epsr.2018.03.001.
[23] M. Rezkallah, et al.: Lyapunov function and sliding mode control approach for the solar-PV grid interface system. IEEE Transactions on Industrial Electronics, 64(1), (2016), 785–795, DOI: 10.1109/tie.2016.2607162.
[24] N. Kumar, B. Singh, and B.K. Panigrahi: Integration of Solar PV with Low- Voltage Weak Grid System: using Maximize-M Kalman Filter and Self-Tuned P&O Algorithm. IEEE Transactions on Industrial Electronics, 66(11), (2019), 9013–9022, DOI: 10.1109/tie.2018.2889617.
[25] H. Sharma, G. Hazrati, and J.Ch.Bansal: Spider monkey optimization algorithm. Evolutionary and swarm intelligence algorithms. Springer, Cham, 2019, 43–59.
[26] K. Neelu, P. Devan, Ch.L. Chowdhary, S. Bhattacharya, G. Singh, S. Singh, and B. Yoon: Smo-dnn: Spider monkey optimization and deep neural network hybrid classifier model for intrusion detection. Electronics, 9(4), (2020), 692, DOI: 10.3390/electronics9040692.
[27] M.A.H. Akhand, S.I. Ayon, A.A. Shahriyar, and N. Siddique: Discrete spider monkey optimization for travelling salesman problem. Applied Soft Computing, 86 (2020), DOI: 10.1016/j.asoc.2019.105887.
[28] Avinash Sharma, Akshay Sharma, B.K. Panigrahi, D. Kiran, and R. Kumar: Ageist spider monkey optimization algorithm. Swarm and Evolutionary Computation, 28 (2016), 58–77, DOI: 10.1016/j.swevo.2016.01.002.
[29] Sriram Mounika and K. Ravindra: Backtracking Search Optimization Algorithm Based MPPT Technique for Solar PV System. In Advances in Decision Sciences, Image Processing, Security and Computer Vision. Springer, Cham, 2020, 498–506.
[30] Pilakkat, Deepthi and S. Kanthalakshmi: Single phase PV system operating under Partially Shaded Conditions with ABC-PO as MPPT algorithm for grid connected applications. Energy Reports, 6 (2020), 1910–1921, DOI: 10.1016/j.egyr.2020.07.019.
[31] R. Gessing: Controllers of the boost DC-DC converter accounting its minimum- and non-minimum-phase nature. Archives of Control Sciences, 19(3), (2009), 245–259.
[32] A. Talha and H. Boumaaraf: Evaluation of maximum power point tracking methods for photovoltaic systems. Archives of Control Sciences, 21(2), (2011), 151–165.
[33] S.N. Singh and S. Mishra: FPGA implementation of DPWM utility/DG interfaced solar (PV) power converter for green home power supply. Archives of Control Sciences, 21(4), (2011), 461–469.
Go to article

Authors and Affiliations

Dipak Kumar Dash
1
Pradip Kumar Sadhu
1
Bidyadhar Subudhi
2

  1. Department of Electrical Engineering, Indian Institute of Technology (ISM), Dhanbad, India
  2. School of Electrical Sciences, Indian Institute of Technology Goa, GEC Campus, Farmagudi, Ponda-401403, Goa, India

This page uses 'cookies'. Learn more