Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 18
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Author presents an analytical method of calculation of unit power losses in magnetic laminations used in electrical machines and transformers. The idea of this method, based on the solution of Maxwell's equations in the lamination material, was described by the author in the previous work [3], taking into account approximation of constitutive static hysteresis loop by elliptic form of the function B = f(H) depending on magnetic saturation. In the previous formula for new isotropic and anisotropic materials it is needed to introduce so called "anomaly coefficient" deduced from the comparison of measured and calculated value of power losses in arbitrary excitation frequency for assumed induction. The method was tested by comparison with the results of experiments presented in commercial catalogues [1, 2]. Assuming superposition of harmonic power losses it is possible to enlarge this method for the estimation of overloss coefficient in dynamo sheet during axial magnetization with nonsinusoidal flux generated e.g. by PWM voltage supply.
Go to article

Authors and Affiliations

Kazimierz Zakrzewski
Download PDF Download RIS Download Bibtex

Abstract

The use of the passivity-based control (PBC) properly fits stability problems related to multilevel converters. Two approaches for

the PBC design have been proposed and will be reviewed in the present paper. Particularly the second is developed by splitting the system into n subsystems and controlling them independently. The partition of the multilevel converter is done on the basis of energy considerations. The main advantage of the second approach is the separate control of the different DC-links and a flexible loading capability.

Go to article

Authors and Affiliations

M. Lissere
Download PDF Download RIS Download Bibtex

Abstract

Brushless DC motors are often used as the power sources for modern ship electric propulsion systems. Due to the electromagnetic torque ripple of the motor, the traditional control method reduces the drive performance of the motor under load changes. Aiming at the problem of the torque ripple of the DC brushless motor during a non- commutation period, this paper analysis the reasons for the torque ripple caused by pulse- width modulation (PWM), and proposes a PWM_ON_PWM method to suppress the torque ripple of the DC brushless motor. Based on the mathematical model of a DC brushless motor, this method adopts a double closed-loop control method based on fuzzy control to suppress the torque ripple of the DC brushless motor. The fuzzy control technology is integrated into the parameter tuning process of the proportional–integral–derivative (PID) controller to effectively improve the stability of the motor control system. Under the Matlab/Simulink platform, the response performance of different PID control methods and the torque characteristics of different PWM modulation methods are simulated and compared. The results show that the fuzzy adaptive PID control method has good dynamic response performance. It is verified that the PWM_ON_PWM modulation method can effectively suppress the torque ripple of the motor during non-commutation period, improve the stability of the double closed-loop control system and meet the driving performance of the motor under different load conditions.

Go to article

Authors and Affiliations

Zhang Daode
Lingkang Wei
Xinyu Hu
Chupeng Zhang
Xuesheng Li
Download PDF Download RIS Download Bibtex

Abstract

The article presents a modulation method for BLDC motors with unconnected windings. This method uses two full bridges (or three 12-switch H-bridges). The use of the described modulation enables reducing the motor current variable and increasing (fourfold in relation to the switching frequency) the motor current ripple frequency. The most important benefit of using a 12-switch inverter is the twofold reduction of the dc-link voltage while maintaining the rated rpm (voltage reduction in comparison to a typical supply method). A voltage reduction causes a reduction in losses on semi-conductor elements. The article also demonstrates that the proposed modulation technique significantly shortens the time of current commutation between windings.
Go to article

Bibliography

[1] Dziadecki A., Grzegorski J., Skotniczny J., Sensorless control system of SRM drive, Przeglad Elektrotechniczny, vol. 88, no. 8, pp. 317–322 (2012).
[2] YangY., TingY., Improved Angular Displacement Estimation Based on Hall-Effect Sensors for Driving a Brushless Permanent-Magnet Motor, IEEE Transactions on Industrial Electronics, vol. 61, no. 1, pp. 504–511 (2014).
[3] Xia C., Xiao Y., ChenW., Shi T., Torque Ripple Reduction in Brushless DC Drives Based on Reference Current Optimization Using Integral Variable Structure Control, IEEE Transactions on Industrial Electronics, vol. 61, no. 2, pp. 738–752 (2014).
[4] Masmoudi M., Badsi B., Masmoudi A., DTC of B4-Inverter-Fed BLDC Motor Drives With Reduced Torque Ripple During Sector-to-Sector Commutations, IEEE Transactions on Power Electronics,vol. 29, no. 9, pp. 4855–4865 (2014).
[5] Chun T., Tran Q., Lee H., Kim H., Sensorless Control of BLDC Motor Drive for an Automotive Fuel Pump Using a Hysteresis Comparator, IEEE Transactions on Power Electronics, vol. 29, no. 3, pp. 1382–1391 (2014).
[6] Dadashnialehi A., Bab-Hadiashar A., Cao Z., Kapoor A., Intelligent Sensorless Antilock Braking System for Brushless In-Wheel Electric Vehicles, IEEE Transactions on Industrial Electronics, vol. 62, no. 3, pp. 1629–1638 (2015).
[7] Tsotoulidis S., Safacas A., Deployment of an Adaptable Sensorless Commutation Technique on BLDC Motor Drives Exploiting Zero Sequence Voltage, IEEE Transactions on Industrial Electronics, vol. 62, no. 2, pp. 877–886 (2015).
[8] Cui G., Liu G., Wang K., Song X., Sensorless Drive for High-Speed Brushless DC Motor Based on the Virtual Neutral Voltage, IEEE Transactions on Power Electronics, vol. 30, no. 6, pp. 3275–3285 (2015).
[9] Jung S., Kim J., Jae J., Kim J., Commutation Control for the Low-Commutation Torque Ripple in the Position Sensorless Drive of the Low-Voltage Brushless DC Motor, IEEE Transactions on Power Electronics, vol. 29, no. 11, pp. 5983–5994 (2014).
[10] Cui C., Liu G., Wang K., A Novel Drive Method for High-Speed Brushless DC Motor Operating in a Wide Range, IEEE Transactions on Power Electronics, vol. 30, no. 9, pp. 4998–5008 (2015).
[11] Ciurys M.P., Analysis of the influence of inverter PWM speed control methods on the operation of a BLDC motor, Archives of Electrical Engineering, vol. 67, no. 4, pp. 939–953 (2018).
[12] Tokyo Shibaura Electric Co., Inverter and air conditioner controlled by the same, U.S. Patent 5 486 743 (1996).
[13] Gui-Jia S., McKeever J.W., Low-cost sensorless control of brushless DC motors with improved speed range, IEEE Transactions on Power Electronics, vol. 19, no. 2, pp. 296–302 (2004).
[14] Becerra R.C., Jahns T.M., Ehsani M., Four-quadrant sensorless brushless ECM drive, APEC ’91: Sixth Annual Applied Power Electronics Conference and Exhibition, Dallas, TX, USA, pp. 202–209 (1991).
[15] Shao J., Nolan D., Teissier M., Swanson D., A novel microcontroller-based sensorless brushless DC (BLDC) motor drive for automotive fuel pumps, IEEE Transactions on Industry Applications, vol. 39, no. 6, pp. 1734–1740 (2003).
[16] LaiY., Shyu F., Chang Y., Novel loss reduction pulsewidth modulation technique for brushless dc motor drives fed by MOSFET inverter, IEEE Transactions on Power Electronics, vol. 19, no. 6, pp. 1646–1652 (2004).
[17] Tokyo Shibaura Electric Co., Drive control apparatus for brushless DC motor and driving method therefore, U.S. Patent 5 491 393 (1996).
[18] Rajeevan P.P., Sivakumar K., Gopakumar K., Patel C., Abu-Rub H., A Nine-Level Inverter Topology for Medium-Voltage Induction Motor Drive With Open-End Stator Winding, IEEE Transactions on Industrial Electronics, vol. 60, no. 9, pp. 3627–3636 (2013).
[19] Wei J., Deng Q., Zhou B., Shi M., Liu Y., The Control Strategy of Open-Winding Permanent Magnet Starter-Generator With Inverter-Rectifier Topology, IEEE Transactions on Industrial Informatics, vol. 9, no. 2, pp. 983–991 (2013).
[20] de Almeida Carlos G.A., dos Santos E.C., Jacobina C.B., Mello J.P.R.A., Dynamic Voltage Restorer Based on Three-Phase Inverters Cascaded Through an Open-End Winding Transformer, IEEE Transactions on Power Electronics, vol. 31, no. 1, pp.188–199 (2016).
[21] Kim Y., Kyung-Won J., Lee T., Kim Y., Jung S., Design and control methodology analysis of BLDC motor for torque ripple minimization considering winding connection, 2013 International Conference on Electrical Machines and Systems (ICEMS), Busan, pp. 1109–1112 (2013).
[22] Qiu J., Shi C., Sensorless control of brushless DC motor with delta connection windings, 2010 International Conference on Electrical Machines and Systems, Incheon, pp. 848–851 (2010).
[23] Seol H., Lim J., Kang D., Park J.S., Lee J., Optimal Design Strategy for Improved Operation of IPM BLDC MotorsWith Low-Resolution Hall Sensors, IEEE Transactions on Industrial Electronics, vol. 64, no. 12, pp. 9758–9766 (2017).
[24] Chen S., SunW.,Wang K., Liu G., Zhu L., Sensorless High-Precision Position Correction Strategy for a 100 kW@20 000 r/min BLDC Motor With Low Stator Inductance, IEEE Transactions on Industrial Informatics, vol. 14, no. 10, pp. 4288–4299 (2018).

Go to article

Authors and Affiliations

Marcin Baszynski
1
ORCID: ORCID

  1. AGH – University of Science and Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The Small Hydro Power Plants allow to increase the energy amount from renewable sources, especially from small rivers in mountainous areas. This paper presents a new concept of a energy conversion system for application in a Small Hydropower Plant (SHP) which is based on a permanent magnet generator (PM generator) with a propeller turbine integrated with the generator rotor. The PM generator can work at a variable speed and therefore energy produced by the PM generator has to be converted by means of a power electronic unit to fit to the three-phase power grid parameters. For this concept, dimensions and parameters of the PM generator were specially designed on account of integration with water turbine. The paper precisely describes elements of energy conversion system and also presents the results of numerical tests for chosen working conditions. An original algorithm of control strategy for power electronic unit was used to adjust generated energy to the required parameters of the three-phase grid.
Go to article

Authors and Affiliations

Tadeusz Sobczyk
Tomasz Węgiel
Witold Mazgaj
Zbigniew Szular
Download PDF Download RIS Download Bibtex

Abstract

An analysis of the influence of inverter PWM speed control methods on the operation of a brushless DC (BLDC) motor was carried out. Field-circuit models of the BLDC motor were developed taking into account rotational speed control by two classic methods: the unipolar H_ON_L_PWM and the bipolar H_PWM_L_PWM. Waveforms of the electrical and mechanical quantities and the motor parameters were computed. The results of the computations were verified by measurements performed on a specially designed test stand. On the basis of the measuredwaveforms of the electrical and mechanical quantities the dependence of the drive system efficiencies and power losses on rotational speed was determined for the two methods of inverter control.

Go to article

Authors and Affiliations

Marek Paweł Ciurys
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a conception of power electronics voltage controlled current source (VCCS) which is able much more precise mapping of its an output current in a reference signal, compared to a typical converter solution. It can be achieved by means of such interconnection of two separate converters that one of them corrects a total output current towards a reference signal. An output power of auxiliary converter is much smaller than an output power of main one. Thanks to continuous work of this converter also pulse modulation components in this current are minimized. These benefits are paid for by a relatively small increase in the complexity and the cost of the system. This conception of a converter has been called the double-converter topology (DCT). In the author opinion presented solution of the system can find application in many power electronics equipment and, therefore, will be developed. In the paper DCT basics, simulation experiments, and possible practical arrangement of the DCT are presented.
Go to article

Authors and Affiliations

Michał Gwóźdź
Download PDF Download RIS Download Bibtex

Abstract

The unbalance of the neutral point voltage is an inherent problem of three-level neutral-point-clamped (NPC) inverter, the effect of neutral point voltage balancing which is caused by voltage vector is analyzed, and the relationship of the voltage offset and neutral point voltage is studied in this paper. This paper proposes a novel neutral point balance strategy for three-level NPC inverter based on space vector pulse width modulation (SVPWM). A voltage offset is added to the modulation wave, and a closed-loop neutral point voltage balance control system is designed. In the control system, the dwelling time of synthesis voltage vectors for SVPWM is varied to solve the problem of the unbalance of the neutral point voltage, the sequence of the voltage vectors maintains unchanging. Simulation and experimental results show the neutral point voltage balancing control strategy based on SVPWM is effective.

Go to article

Authors and Affiliations

Bo Gong
Shanmei Cheng
Yi Qin
Download PDF Download RIS Download Bibtex

Abstract

A lot of methods for sensorless drive control have been published last years for synchronous and asynchronous machines. One of the approaches uses high frequency carrier injection for position control. The injected high frequency signal is controlled to remain in alignment with the saliency produced by the saturation of the main flux. Due to the fact that it does not use the fundamental machine model which fails at standstill of the magnetic field it is possible to control the drive even at zero speed. In spite of this obvious advantage industry does not apply sensorless control in their products. This is due to the dependency of many published methods on physical parameters of the machine. The high frequency carrier injection method, presented in this paper, does not need to have exact machine parameters and it can be used for machines where there is only a very small rotor anisotropy like in Surface Mounted Permanent Magnet Synchronous Machines (SMPMSM) [1]. Standard drives usually are supplied by a 6-pulse diode rectifier. Due to new European directives concerning the harmonic content in the mains it is expected that the use of controlled pulse-width modulated PWM rectifiers will be enforced in the future [2]. An important advantage of this type of rectifiers is the regeneration of the energy back to the grid. Another benefit are low harmonics in comparison to diode rectifiers. Using one of many control methods published so far it is also possible to achieve almost unity power factor. However, in these methods voltage sensors are necessary to synchronize PWM rectifiers with the mains. Therefore they are not very popular in the industry with respect to the cost and the lack of reliability. Recently a control method was proposed which is based on a tracking scheme. It does not need any voltage sensor on the ac-side of the rectifier and it does not need to know accurate parameters of the system. This paper presents the control solution for a cheap, industry friendly (no additional hardware and installation effort) drive system. The phase tracking method for control of electrical drive and PWM rectifier is described. Encouraging experimental results are shown.

Go to article

Authors and Affiliations

R. Kennel
O.C. Ferreira
P. Szczupak
Download PDF Download RIS Download Bibtex

Abstract

Due to recent developments in the field of high-power and medium-voltage, the multilevel inverter has raised to such an extent owing to some of its amazing facts regarding harmonic spectrum, ease in control, reduced electromagnetic interference (EMI), filterless circuit, stress on power switches, common-mode voltage. This paper well describes a novel architecture of a single-phase multilevel inverter using a lesser number of overall components, especially the power switches. The proposed topology is generalized in the structure that can generate any number of voltage steps. A 7-level structure of the proposed topology is explained and is elaborately discussed. Simulation is carried out in MATLAB and corresponding experimental results verify the existence of the proposed multilevel inverter. The real-time experimental results were presented and are well verified by the simulation results for 7-level as well for 13-level across RL-Load. The nature of load current is also indicated as per the nature of load voltage. Nevertheless, the topology is further compared with some of the recent literature and found superior in each respect.
Go to article

Authors and Affiliations

Bidyut Mahato
1
ORCID: ORCID
Mrinal Ranjan
2
Pradipta Kumar Pal
3
Santosh Kumar Gupta
4
Kailash Kumar Mahto
2

  1. ABES Engineering College, Ghaziabad, UP – 201009, India
  2. Gaya College of Engineering, Gaya, Bihar – 823003, India
  3. Indian Institute of Technology (Indian School of Mines), Dhanbad – 826004, India
  4. Government Engineering College, Siwan, Bihar – 841226, India
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a concept of a shunt active power filter, which is able to provide more precise mapping of its input current drawn from a power line in a reference signal, as compared to a typical filter solution. It can be achieved by means of an interconnection of two separate power electronics converters making, as a whole, a controlled current source, which mainly determines the quality of the shunt active filter operation. One of these power devices, the “auxiliary converter”, corrects the total output current, being a sum of output currents of both converters, toward the reference signal. The rated output power of the auxiliary converter is much lower than the output power of the main one, while its frequency response is extended. Thanks to both these properties and the operation of the auxiliary converter in a continuous mode, pulse modulation components in the filter input current are minimized. Benefits of the filter are paid for by a relatively small increase in the complexity and cost of the system. The proposed solution can be especially attractive for devices with higher output power, where, due to dynamic power loss in power switches, a pulse modulation carrier frequency must be lowered, leading to the limitation of the “frequency response” of the converter. The concept of such a system was called the “hybrid converter topology”. In the first part of the paper, the rules of operation of the active filter based on this topology are presented. Also, the results of comparative studies of filter simulation models based on both typical, i.e. single converter, and hybrid converter topologies, are discussed.
Go to article

Bibliography

  1.  B. Kroposki, C. Pink, R. DeBlasio, H. Thomas, M. Simões, and P. Sen, “Benefits of Power Electronic Interfaces for Distributed Energy Systems”, IEEE Trans. Energy Convers. 25, 901–908 (2010).
  2.  M. Pasko, D. Buła, K. Dębowski, D. Grabowski, and M. Maciążek, “Selected methods for improving operating conditions of three-phase systems working in the presence of current and voltage deformation — Part I”, Arch. .Electr. Eng. 67, 591–602 (2018).
  3.  A. Benchabira and M. Khiat, “A hybrid method for the optimal reactive power dispatch and the control of voltages in an electrical energy network”, Arch. Electr. Eng. 68, 535–551 (2019).
  4.  A. Nami, J.L. Rodríguez Amenedo, S. Arnaltes Gómez, and M.Á. Cardiel Álvarez, “Active power filtering embedded in the frequency control of an offshore wind farm connected to a diode-rectifier-based HVDC link”, Energies 11, 2718 (2018).
  5.  A.J. Christe, S. Negrashov, and P.M. Johnson, “Design, implementation, and evaluation of open power quality”, Energies 13, 4032 (2020).
  6.  B. Lewczuk, G. Redlarski, A. Zak, N. Ziółkowska, B. Przybylska-Gornowicz, and M. Krawczuk, “Influence of Electric, Magnetic, and Electromagnetic Fields on the Circadian System: Current Stage of Knowledge”, in BioMed Research International 2014, 2014, pp. 1–13.
  7.  M. Siwczyński and M. Jaraczewski, “Reactive compensator synthesis in time-domain”, Bull. Pol. Ac.: Tech. 60(1), 119–124 (2012).
  8.  Y. Chen, Z. Huang, Z. Duan, P. Fu, G. Zhou, and L. Luo, “A four-winding inductive filtering transformer to enhance power quality in a high-voltage distribution network supplying nonlinear loads”, Energies 12, 2021 (2019).
  9.  Y. Rozanov, S. Ryvkin, E. Chaplygin, and P. Voronin, Fundamentals of power electronics: operating principles, design, formulas, and applications, CRC Press, 2015.
  10.  M. Rashid, Power Electronics Handbook, Elsevier Ltd.: Oxford, 2018.
  11.  K. Shyu, M. Yang, Y. Chen, and Y. Lin, “Model Reference Adaptive Control Design for a Shunt Active-Power-Filter System”, IEEE Trans. Ind. Electron.55, 97–106 (2008).
  12.  A. Kouzou, M. Mahmoudi, and M. Boucherit, “Evaluation of the Shunt Active Power Filter apparent power ratio using particle swarm optimization”, Arch. Control Sci. 20, 47–76 (2010).
  13.  K. Mikołajuk and A. Toboła, “Average time–varying models of active power filters”, Prz. Elektrotechniczny 95, 53–55 (2010).
  14.  M. Gwóźdź, “Power electronics active shunt filter with controlled dynamics”, Compel-Int. J. Comp. Math. Electr. Electron. Eng. 32, 1337–1344 (2013).
  15.  S. Fryze, “Active, reactive, and apparent power in circuits with nonsinusoidal voltage and current”, Prz. Elektrotechniczny 13, 193–203 (1931).
  16.  M. Artemenko, L. Batrak, and S. Polishchuk, “New definition formulas for apparent power and active current of three-phase power system”, Prz. Elektrotechniczny 95, 81–85 (2019).
  17.  H. Akagi, “Modern active filters and traditional passive filters”, Bull. Pol. Ac.: Tech. 54(3), 255–269 (2006).
  18.  H. Akagi, E. Watanabe, and M. Aredes, Instantaneous power theory and applications to power conditioning, IEEE Press, Hoboken: Piscataway, 2017.
  19.  L. Czarnecki, “Effect of Supply Voltage Harmonics on IRP-Based Switching Compensator Control”, IEEE Trans. Power Electron. 24, 483–488 (2009).
  20.  J. Vásárhelyi, M. Imecs, C. Szabó, I. Incze, and Á. Tihamér, “Managing transients generated by the reconfiguration process at the tandem inverter fed induction motor”, Proceedings of IEEE 7th International Conference on Intelligent Engineering Systems, 2003, pp. 388–393.
  21.  K. Kaneko, J. Mitsuta, K. Matsuse, K. Sasagawa, Y. Abe, and L. Huang, “Analysis of dynamic variation on a combined control strategy for a five-level double converter”, Proceedings of Power Electronics Specialists Conference PESC ’05, 2005, pp. 885–891.
  22.  M. Imecs, A. Trzynadlowski, I. Incze, and C. Szabo, “Vector Control Schemes for Tandem-Converter Fed Induction Motor Drives”, IEEE Trans. Power Electron. 20, 493–501 (2005).
  23.  T. Morizane and N. Kimura, “Circulating current control of double converter system for wind power generation”, Proceedings of the 14th European Conference on Power Electronics and Applications (EPE 2011), 2011.
  24.  A. Tomaszuk and A. Krupa, “High efficiency high step-up DC/ DC converters – a review”, Bull. Pol. Ac.: Tech. 59(4), 475–483 (2011).
  25.  M. Gwóźdź, Ł. Ciepliński, and M. Krystkowiak, “Power supply with parallel reactive and distortion power compensation and tunable inductive filter — Part 1”, Bull. Pol. Ac.: Tech. 68(3), 401–408 (2020).
  26.  X. Rui, L. Jing, L. Fuzhong, and W. Zhi, “The application on active noise cancellation — Research on the series-parallel compensated UPS converter”, International Symposium on Electromagnetic Compatibility EMC 2007, China, 2007, pp.138–141.
  27.  L. Asiminoaei, E. Aeloiza, P. Enjeti, and F. Blaabjerg, “Shunt Active-Power-Filter Topology Based on Parallel Interleaved Inverters”, IEEE Trans. Ind. Electron. 55, 1175–1189 (2008).
  28.  G. Eirea and S. Sanders, “Phase Current Unbalance Estimation in Multiphase Buck Converters”, IEEE Trans. Power Electron. 23, 137–143 (2008).
  29.  M. Hirakawa, M. Nagano, Y. Watanabe, K. Ando, S. Nakatomi, S. Hashino, and T. Shimizu, “High power density interleaved dc/dc converter using a 3-phase integrated close-coupled inductor set aimed for electric vehicles”, Proceedings of Energy Conversion Congress and Exposition (ECCE) 2010, 2010, pp. 2451–2457.
  30.  J. Iwaszkiewicz, P. Bogusławski, A. Krahel, and E. Łowiec, “Three-phase voltage outages compensator with cascaded multilevel converter”, Arch. Electr. Eng. 61, 325–336 (2012).
  31.  J. Wu, H. Jou, P. Huang, and I. Chiu, “Current balancing control for an interleaved boost power converter”, Int. J. .Electron. 106, 1567–1582 (2019).
  32.  M. Schetzen, Linear time-invariant systems, Wiley-IEEE Press, 2003.
  33.  M. Gwóźdź, “Stability of discrete time systems on base of generalized sampling expansion”, Elektryka, Silesian University of Technology 57, 29–40 (2011).
  34.  J. Doyle, B. Francis, and A. Tannenbaum, Feedback Control Theory, Dover Publications, 2013.
  35.  Y. Hasegawa, Control Problems of Discrete-Time Dynamical Systems, Springer, 2015.
  36.  W. Kester, The Data Conversion Handbook, Analog Devices Inc, Newnes, 2005.
  37.  J. de la Rosa, “Sigma-Delta Modulators: Tutorial Overview, Design Guide, and State-of-the-Art Survey”, IEEE Trans. Circuits Syst. I-Regul. Pap. 58, 1–21 (2011).
  38.  A. Jain, M. Venkatesan, and S. Pavan, “Analysis and Design of a High Speed Continuous-time Delta Sigma Modulator Using the Assisted Opamp Technique”, IEEE J. Solid-State Circuit. 47, 1615–1625 (2012).
  39.  B. Razavi, “The Delta-Sigma Modulator [A Circuit for All Seasons]”, IEEE Solid-State Circuit. Mag. 8, 10–15 (2016).
  40.  M. Gwozdz and D. Matecki, “Power electronics inverter with a modified sigma-delta modulator and an output stage based on GaN E-HEMTs”, in Advanced Control of Electrical Drives and Power Electronic Converters, pp. 327–338 Springer, London, 2017.
  41.  J. Chen, Y. Hwang, C. Jheng, Y. Ku, and C. Yu, “A Low-Electromagnetic-Interference Buck Converter with Continuous-Time Delta- Sigma-Modulation and Burst-Mode Techniques”, IEEE Trans. Ind. Electron. 65, 6860–6869 (2018).
  42.  D. Gerber, C. Le, M. Kline, P. Kinget, and S. Sanders, “An Integrated Multilevel Converter with Sigma–Delta Control for LED Lighting”, IEEE Trans. Power Electron. 34, 3030–3040 (2019).
  43.  B. Jacob and M. Baiju, “Space-Vector-Quantized Dithered Sigma–Delta Modulator for Reducing the Harmonic Noise in Multilevel Converters”, IEEE Trans. Ind. Electron. 62, 2064–2072 (2015).
  44.  C. Chang, F. Wu, and Y. Chen, “Modularized Bidirectional Grid-Connected Inverter with Constant-Frequency Asynchronous Sigma-Delta Modulation”, IEEE Trans. Ind. Electron. 59, 4088–4100 (2012).
  45.  B. Wilamowski and J. Irwin, Fundamentals of Industrial Electronics, CRC Press: London, United Kingdom, 2017.
  46.  Y. Kang, T. Ge, H. He, and J. Chang, “A review of audio class D amplifiers”, 2016 International Symposium on Integrated Circuits (ISIC), Singapore, 12–14 (2016).
  47.  X. Jiang, “Fundamentals of Audio Class D Amplifier Design: A Review of Schemes and Architectures”, IEEE Solid-State Circuits Magazine 9, 14–25 (2017).
  48.  G. Scott, “Design Considerations for Class-D Audio Power Amplifiers”, in Application Report (SLOA242A), Texas Instruments, 2019.
  49.  A. Chatterjee, H. Nobahari, and P. Siarry, Advances in Heuristic Signal Processing and Applications, Springer: Berlin, Heidelberg, 2013.
  50.  H. Zhang, C. Qin, and Y. Luo, “Neural-Network-Based Constrained Optimal Control Scheme for Discrete-Time Switched Nonlinear System Using Dual Heuristic Programming”, IEEE Trans. Autom. Sci. Eng. 11, 839–849 (2014).
  51.  R. Kirlin, C. Lascu, and A. Trzynadlowski, “Shaping the Noise Spectrum in Power Electronic Converters”, IEEE Trans. Ind. Electron. 58, 2780–2788 (2011).
  52.  M. Auer and T. Karaca, “Spread spectrum techniques for Class-D audio amplifiers to reduce EMI”, e & i Elektrotechnik und Informationstechnik 133, 43–47 (2016).
  53.  MITSUBISHI ELECTRIC Semiconductors & Devices: Power Modules for Power Applications | Power supply / UPS. [Online]. https:// www.mitsubishielectric.com/semiconductors/application/ups/index.html (accessed Aug. 11 2020).
  54.  Silicon Carbide CoolSiC™ MOSFET Modules – Infineon Technologies. [Online] https://www.infineon.com/cms/en/product/power/mosfet/ silicon-carbide/modules/ (accessed Aug. 11 2020).
Go to article

Authors and Affiliations

Michał Gwóźdź
1
ORCID: ORCID
Łukasz Ciepliński
1
ORCID: ORCID

  1. Poznan University of Technology, Faculty of Control, Robotics and Electrical Engineering, Piotrowo 3A, 60-965 Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

Thanks to a very high luminous efficacy of LED lamps (over 160 lm/W) they are the most preferred light sources in lighting applications today. The useful lifetime of LED modules exceeds 50,000 hours. Chromatic parameters of lamps making use of SSL (Solid State Lighting) have already equalled classic solutions, although they were noticeably worse not so long ago. High values of the Colour Rendering Index (CRI) and ease of control over the luminous flux cause that lamps with LEDs have become very attractive solutions. Today, the most important problem concerns LED drivers supplied from the 230 VAC mains. The lifetime of switched-mode converters, including electrolytic capacitors, is considerably shorter than that of LEDs. This paper discusses the features of alternative drivers for LED modules which are supplied directly from the 230 VAC mains and do not contain any electrolytic capacitors. In particular, power factor and efficiency of lamps with one or two LED strings are analysed and some hints concerning optimal design of such lamps are given. A unique feature of this work is a detailed analysis of harmonics contents in the supply current of such drivers, proving their conformity with the relevant standard. Finally, some problems associated with flicker resulting from the considered type of supply are mentioned.

Go to article

Authors and Affiliations

J. Chęciński
Z. Filus
Download PDF Download RIS Download Bibtex

Abstract

Installation and operation of rail vehicles powered by multiple system voltages forces the construction of multi-system traction substation. The article describes a traction substation power supply with 15 kV output voltage and frequency Hz and 25 kV at 50 Hz. The topology of the power electronics system and the control structure of the power supply enables parallel connection of several power supplies. The selected topology and control structure ensures minimizing the rms value of the LCRL filter capacitor current used at the output of the inverters. The article analyses the influence of harmonics consumed by the active front end (AFE) rectifier used in traction vehicles on the rms current of the LCRL filter capacitor.
Go to article

Bibliography

  1.  L. Asiminoaei, E. Aeloiza, P.N. Enjeti, and F. Blaabjerg, “Shunt Active-Power-Filter Topology Based on Parallel Interleaved Inverters”, IEEE Trans. Ind. Electron. 55(3), 1175–1189 (2008), doi: 10.1109/TIE.2007.907671.
  2.  H.-G. Jeong, D.-K. Yoon, and K.-B. Lee, “Design of an LCL-Filter for Three-Parallel Operation of Power Converters in Wind Turbines”, J. Power Electron. 13(3), 437–446 (2013), doi: 10.6113/JPE.2013.13.3.437.
  3.  T. Platek, “Analysis of Ripple Current in the Capacitors of Active Power Filters”, Energies 12(23), 1‒31 (2019), doi: 10.3390/en12234493.
  4.  D. Shin, H.-J. Kim, J.-P. Lee, T.-J. Kim, and D.-W. Yoo, “Coupling L-CL Filters and Active Damping Method for Interleaved Three-Phase Voltage Source Inverters”, in 2015 17th European Conference on Power Electronics and Applications (EPE’15 ECCE-Europe), Geneva, 2015, pp. 1‒10, doi: 10.1109/EPE.2015.7309318.
  5.  G.G. Balazs, M. Horvath, I. Schmidt, and P. Kiss, “Examination of new current control methods for modern PWM controlled AC electric locomotives”, in 6th IET International Conference on Power Electronics, Machines and Drives (PEMD 2012), Bristol, 2012, pp. 1‒5, doi: 10.1049/cp.2012.0314.
  6.  P. Falkowski, A. Sikorski, K. Kulikowski, and M. Korzeniewski, “Properties of active rectiefier with LCL filter in the selection process of the weighting factors in finite control set-MPC”, Bull. Pol. Acad. Sci. Tech. Sci. 68(1), 51–60 (2020), doi: 10.24425/bpasts.2020.131836.
  7.  J. Michalik, J. Molnar, and Z. Peroutka, “Optimal Control of Traction Single-Phase Current–Source Active Rectifier”, in Proceedings of 14th International Power Electronics and Motion Control Conference EPE-PEMC 2010, Ohrid, 2010, pp. T9-82-T9-88, doi: 10.1109/ EPEPEMC.2010.5606604.
  8.  L.Di. Donna, F. Liccardo, P. Marino, C. Schiano, and M. Triggianese, “Single-phase synchronous active front-end for high power applications,” in Proceedings of the IEEE International Symposium on Industrial Electronics, 2005. ISIE 2005, Dubrovnik, Croatia, 2005, vol. 2, pp. 615‒620, doi: 10.1109/ISIE.2005.1528987.
  9.  D.G. Holmes, T.A. Lipo, Pulse Width Modulation For Power Converters, pp. 125–146, IEEE PRESS, Willey-Interscience. Copyright, 2003.
  10.  W. Wu, M. Huang, and F. Blaabjerg, “Efficiency comparison between the LLCL and LCL-filters based single-phase grid-tied inverters“, Arch. Electr. Eng. 63(1), 63‒79 (2014), doi: 10.2478/aee-2014-0005.
  11.  M. Liserre, F. Blaabjerg, and S. Hansen, “Design and Control of an LCL-Filter-Based Three-Phase Active Rectifier”, IEEE Trans. Ind. Appl. 41(5), 1281‒1291 (2005), doi: 10.1109/TIA.2005.853373.
  12.  K. Jalili and S. Bernet, “Design of LCL Filters of Active-Front-End Two-Level Voltage-Source Converters”, IEEE Trans. Ind. Electron. 56(5), 1674‒1689, (2009), doi: 10.1109/TIE.2008.2011251.
  13.  S. Piasecki, R. Szmurlo, J. Rabkowski, and M. Jasinski, “Dedicated system for design, analysis and optimization of AC-DC converters”, Bull. Pol. Acad. Sci. Tech. Sci. 64(4), 897‒905 (2016).
  14.  F. Liu, X. Zha, Y. Zhou, and S. Duan, “Design and research on parameter of LCL filter in three-phase grid-connected inverter”, in Power Electronics and Motion Control Conference, 2009. IPEMC ’09. IEEE 6th International, May 2009, pp. 2174 –2177, doi: 10.1109/ IPEMC.2009.5157762.
  15.  M.A. Abusara, M. Jamil, and S. M. Sharkh, “Repetitive current control of an interleaved grid connected inverter”, in Proc. 3rd IEEE Int. Symp. Power Electron. Distrib. Gener. Syst. (PEDG), Aalborg, 2012, pp. 558–563, doi: 10.1109/PEDG.2012.6254057.
  16.  A.A. Rockhill, M. Liserre, R. Teodorescu, and P. Rodriguez, “Grid-Filter Design for a Multimegawatt Medium-Voltage Voltage-Source Inverter”, IEEE Trans. Ind. Electron. 58(4), 1205–1217 (2011), doi: 10.1109/TIE.2010.2087293.
Go to article

Authors and Affiliations

Tadeusz Płatek
1
Tomasz Osypinski
2
Zdziaław Chłodnicki
2

  1. Institute of Control and Industrial Electronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
  2. Medcom Company, Jutrzenki 78A, 02-315 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The separation of variables approach to formulate the averaged models of DC-DC switch-mode power converters is presented in the paper. The proposed method is applied to basic converters such as BUCK, BOOST and BUCK-BOOST. The ideal converters or converters with parasitic resistances, working in CCM and in DCM mode are considered. The models are presented in the form of equation systems for large signal, steady-state and small-signal case. It is shown, that the models obtained by separation of variables approach differ in some situations from standard models based on switch averaging method.

Go to article

Authors and Affiliations

Włodzimierz Janke
Download PDF Download RIS Download Bibtex

Abstract

The averaged models of switch-mode DC-DC power converters are discussed. Two methods of averaged model derivation are considered - the first, based on statespace averaging and the second, on the switch averaging approach. The simplest converters: BUCK, BOOST and BUCK-BOOST working in CCM (continuous conduction mode) or DCM are taken as examples in detailed considerations. Apart from the ideal converters, the more realistic case of converters with parasitic resistances is analyzed. The switch averaging approach is used more frequently than the other and is believed to be more convenient in practical applications. It is shown however, that in the deriving the averaged models based on the switch-averaging approach, some informalities have been made, which may be the source of errors in the case of converters with parasitic resistances, or working in DCM mode.

Go to article

Authors and Affiliations

Włodzimierz Janke
Download PDF Download RIS Download Bibtex

Abstract

This paper presents an improved Virtual Flux-based Direct Power Control (VF-DPC) applied for a three-phase pulse width modulation rectifier. The proposed control approach incorporates an enhanced Virtual Flux estimator made up of a cascade second-degree low-pass filter. This latter guarantees the attenuation of the highest harmonics. The introduced control concept presented in this paper has interesting features such as reducing the current harmonics distortion. In other words, it ensures that the input current drawn from the power supply is perfectly sinusoidal whatever the state of the network voltage. The proposed method also allows to maintain the DC side capacitor voltage at the required level and assure that the input current is in phase with the respective voltage to satisfy the unity power factor function. The results obtained from the numerical simulation have proved the effectiveness of the proposed method for disturbed grid voltage and system parameters variation.

Go to article

Authors and Affiliations

Zakaria El Zaïr Laggoun
Hocine Benalla
Khalil Nebti
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a concept of a control system for a high-frequency three-phase PWM grid-tied converter (3x400 V / 50 Hz) that performs functions of a 10-kW DC power supply with voltage range of 600÷800 V and of a reactive power compensator. Simulation tests (in PLECS) allowed proper selection of semiconductor switches between fast IGBTs and silicon carbide MOSFETs. As the main criterion minimum amount of power losses in semiconductor devices was adopted. Switching frequency of at least 40 kHz was used with the aim of minimizing size of passive filters (chokes, capacitors) both on the AC side and on the DC side. Simulation results have been confirmed in experimental studies of the PWM converter, the power factor of which (inductive and capacitive) could be regulated in range from 0.7 to 1.0 with THDi of line currents below 5% and energy efficiency of approximately 98.5%. The control system was implemented in Texas Instruments TMS320F28377S microcontroller.

Go to article

Authors and Affiliations

Roman Barlik
Piotr Grzejszczak
Bernard Leszczyński
Marek Szymczak
Download PDF Download RIS Download Bibtex

Abstract

Many parts of remote locations in the world are not electrified even in this Advanced Technology Era. To provide electricity in such remote places renewable hybrid energy systems are very much suitable. In this paper PV/Wind/Battery Hybrid Power System (HPS) is considered to provide an economical and sustainable power to a remote load. HPS can supply the maximum power to the load at a particular operating point which is generally called as Maximum Power Point (MPP). Fuzzy Logic based MPPT (FLMPPT) control method has been implemented for both Solar and Wind Power Systems. FLMPPT control technique is implemented to generate the optimal reference voltage for the first stage of DC-DC Boost converter in both the PV and Wind energy system. The HPS is tested with variable solar irradiation, temperature, and wind speed. The FLMPPT method is compared with P&O MPPT method. The proposed method provides a good maximum power operation of the hybrid system at all operating conditions. In order to combine both sources, the DC bus voltage is made constant by employing PI Controllers for the second stage of DC-DC Buck-Boost converter in both Solar and Wind Power Systems. Battery Bank is used to store excess power from Renewable Energy Sources (RES) and to provide continuous power to load when the RES power is less than load power. A SPWM inverter is designed to convert DC power into AC to supply three phase load. An LC filter is also used at the output of inverter to get sinusoidal current from the PWM inverter. The entire system was modeled and simulated in Matlab/Simulink Environment. The results presented show the validation of the HPS design.

Go to article

Authors and Affiliations

T. Bogaraj
J. Kanakaraj
J. Chelladurai

This page uses 'cookies'. Learn more