Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the core design, model development and results of the neutron transport simulations of the large Pressurized Water Reactor based on the AP1000 design.The SERPENT 2.1.29 Monte Carlo reactor physics computer code with ENDF/BVII and JEFF3.1.1 nuclear data libraries was applied. The full-core 3D models were developed according to the available Design Control Documentation and the literature. Criticality simulations were performed for the core at the Beginning of Life state for Cold Shutdown, Hot Zero Power and Full Power conditions. Selected core parameters were investigated and compared with the design data: effective multiplication factors, boron concentrations, control rod worth, reactivity coefficients and radial power distributions. Acceptable agreement between design data and simulations was obtained, confirming the validity of the model and applied methodology.
Go to article

Authors and Affiliations

Piotr Darnowski
Patryk Ignaczak
Paweł Obrębski
Michał Stępień
Grzegorz Niewiński
Download PDF Download RIS Download Bibtex

Abstract

A lumped parameter type code, called HEPCAL, has been worked out in the Institute of Thermal Technology of the Silesian University of Technology for simulations of a pressurized water reactor containment transient response to a loss-of-coolant accident. The HEPCAL code has been already verified and validated against available experimental data, which in fact have been taken from separate effect tests mainly. This work is devoted to validation of the latest version of the HEPCAL code against experimental data from more complex tests. These experiments have been performed on three different test rigs (called TOSQAN,MISTRA and ThAI) and a part of them became the basis of the International Standard Problem No. 47 (ISP-47) dedicated to containment thermal-hydraulics. Selected experiments realized within the framework of the ISP-47 project have been simulated using the HEPCAL-AD code. The obtained results allowed for drawing of some important conclusions concerning heat and mass transfer models (especially steam condensation), two-phase flow model and buoyancy effects.
Go to article

Authors and Affiliations

Tomasz Bury
Jan Składzień
Adam Fic

This page uses 'cookies'. Learn more