Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Reactive powder concrete (RPC), due to its characteristic composition with reduced water quantity, often below a stoichiometric ratio, the addition of pozzolana usually close to or above 20% of the weight of cement and a significantly reduced inclusion rate compared to normal or high performance concrete, has a different nature of the interfacial transition zone between the micro aggregate grains and the binder matrix. Due to the significant influence of RPC curing conditions on the morphology of the interfacial transition zone, the analysis included composites cured in water of Tmax=20°C, subject to low-pressure steam curing Tmax=90°C and autoclaved at Tmax=250°C. The paper presents a qualitative assessment of the interfacial transition zone in reactive powder concretes with the use of a scanning microscope with the use of linear EDS and quantitative analysis by means of stereological analysis of the image obtained with the use of a BSE detector. The results of the study unequivocally confirm the lack of portlandite crystallisation at the phase interface and the different phase composition in the interfacial transition zone in relation to the mean mass composition.

Go to article

Authors and Affiliations

Tomasz Zdeb
Download PDF Download RIS Download Bibtex

Abstract

In this research reactive powder concrete (RPC) was prepared using sand from North Sinai. The mechanical properties of locally cast RPC were investigated and evaluated by studying the effects of using different cement and silica fume contents and new steel fi bers’ aspect ratios as reinforce-ment for RPC. Specimens’ preparation, curing regimes and testing procedures to evaluate the com-pressive strength, the modulus of elasticity, the indirect tensile strength and the fl exural strength were discussed. A compressive strength of 154.5 MPa, indirect tensile strength of 11.98 MPa, mod-ulus of elasticity of 45.1 GPa and fl exural strength of 30.26 MPa have been achieved for reinforced RPC contains 800 kg/m³ cement content and silica fume content 30% of cement weight. The test results showed some improvements by increasing cement and silica fume contentsas well as adding steel fi bers on the compressive strength, modulus of elasticity and indirect tensile strength.

Go to article

Authors and Affiliations

Nageh N. Meleka
Alaa A. Bashandy
Mohamed A. Arab
Download PDF Download RIS Download Bibtex

Abstract

The paper deals with the properties and microstructure of Reactive Powder Concrete (RPC), which was developed at Cracow University of Technology. The influence of three different curing conditions: water (W), steam (S) and autoclave (A) and also steel fibres content on selected properties of RPC was analyzed. The composite characterized by w/s ratio equal to 0.20 and silica fume to cement ratio 20%, depending on curing conditions and fibres content, obtained compressive strength was in the range from 200 to 315 MPa, while modulus of elasticity determined during compression was about 50 GPa. During three-point bending test load-deflection curves were registered. Base on aforementioned measurements following parameters were calculated: flexural strength, stress at limit of proportionality (LOP), stress at modulus of rapture (MOR), work of fracture (WF), and toughness indices I₅, I₁₀ and I₂₀. Both amount of steel fibres and curing conditions influence the deflection of RPC during bending.

Go to article

Authors and Affiliations

T. Zdeb
J. Śliwiński

This page uses 'cookies'. Learn more