Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This work summarizes efficiency measurement results of a full bridge, 3 phase inverter composed of state-of-the-art Si IGBT transistors and Si or SiC diodes. Different (symmetrical and discontinuous) space vector modulation strategies were chosen in order to examine their influence (together with modulation frequency) on inverter losses. Induction machine was used as load, different load points were examined. Results clearly show, that proper modulation strategy, minimizing the switching losses of semiconductor switches, can increase the overall output efficiency at about 1% in case of both silicon and hybrid constructions. The drawback of DPWM approach is connected with the decreased quality of inverter output current. Hybrid technology can also improve the output efficiency at about 1% when compared to traditional constructions, but only in case of elevated switching frequencies. At low frequencies (below 10 kHz) modern semiconductor offer comparable results at much lower device costs.

Go to article

Authors and Affiliations

Michał Bonisławski
Marcin Hołub
Download PDF Download RIS Download Bibtex

Abstract

The most extensively employed strategy to control the AC output of power electronic inverters is the pulse width modulation (PWM) strategy. Since three decades modulation hypothesis continues to draw considerable attention and interest of researchers with the aim to reduce harmonic distortion and increased output magnitude for a given switching frequency. Among different PWM techniques space vector modulation (SVM) is very popular. However, as the number of output levels of the multilevel inverter (MLI) increases, the implementation of SVM becomes more difficult, because as the number of levels increases the total number of switches in the inverter increases which will increase the total number of switching states, which will result in increased computational complexity and increased storage requirements of switching states and switching pulse durations. The present work aims at reducing the complexity of implementing the space vector pulse width modulation (SVPWM)technique in multilevel inverters by using a generalized integer factor approach (IFA). The performance of the IFA is tested on a three-level inverter-fed induction motor for conventional PWM (CPWM) which is a continuous SVPWM method employing a 0127 sequence and discontinuous PWM (DPWM) methods viz, DPWMMIN using 012 sequences and DPWMMAX using a 721 sequence.
Go to article

Bibliography

[1] Hava A.M., Kerkman R.J., Lipo T.A., A high-performance generalized discontinuous PWM algorithm, IEEE Transactions on Industry Applications, vol. 34, no. 5, pp. 1059–1071 (1998), DOI: 10.1109/28.720446.
[2] Hava A.M.,Kerkman R.J., Lipo T.A., Simple analytical and graphical methods for carrier-basedPWMVSI drives, IEEE Transactions on Power Electronics, vol. 14, no. 1, pp. 49–61 (1999), DOI: 10.1109/63.737592.
[3] Olorunfemi Ojo, The generalized discontinuous PWM scheme for three-phase voltage source inverters, IEEE Transactions on Industry Electronics, vol. 51, no. 6, pp. 1280–1289 (2004), DOI: 10.1109/TIE.2004.837919.
[4] Narayanan G., Ranganathan V.T., Two novel synchronized bus-clamping PWM strategies based on space vector approach for high power drives, IEEE Transactions on Power Electronics, vol. 17, no. 1, pp. 84–93 (2002), DOI: 10.1109/63.988673.
[5] Soumitra Das, Narayanan G., Pandey M., Space-Vector-Based Hybrid Pulsewidth Modulation Techniques for a Three-Level Inverter, IEEE Transactions on Power Electronics, vol. 29, no. 9, pp. 4580–4591 (2014), DOI: 10.1109/TPEL.2013.2287095.
[6] Narayanan G., Zhao Di, Krishnamurthy H.K., Rajapandian Ayyanar, Ranganathan V.T., Space vector basedPWMtechniques for reduced current ripple, IEEE Transactions on Industrial Electronics, vol. 55, no. 4, pp. 1614–1627 (2008), DOI: 10.1109/TIE.2007.907670.
[7] Hari V.S.S.P.K., Narayanan G., Space-vector-based hybrid pulse width modulation technique to reduce line current distortion in induction motor drives, IET power Electronics, vol. 5, no. 8, pp. 1463–1471 (2012), DOI: 10.1049/iet-pel.2012.0078.
[8] Changliang Xia, Guozheng Zhang, Yan Yan, Xin Gu, Tingna Shi, Xiangning He, Discontinuous Space Vector PWM Strategy of Neutral-Point-Clamped Three-Level Inverters for Output Current Ripple Reduction, IEEE Transactions on Power Electronics, vol. 32, no. 7, pp. 5109–5121 (2017), DOI: 10.1109/TPEL.2016.2611687.
[9] Basu K., Prasad J.S.S., Narayanan G., Krishnamurthy H.K., Ayyanar R., Reduction of torque ripple in induction motor drives using an advanced hybrid PWM technique, IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp. 2085–2091 (2010), DOI: 10.1109/TIE.2009.2034183.
[10] Das S., Narayanan G., Novel switching sequences for a space-vector-modulated three-level inverter, IEEE Transactions on Industrial Electronics, vol. 59, no. 3, pp. 1477–1487 (2012), DOI: 10.1109/TIE.2011.2163373.
[11] Das S., Narayanan G., Analytical closed-form expressions for harmonic distortion corresponding to novel switching sequences for neutral-point-clamped inverters, IEEE Transactions on Industrial Electronics, vol. 61, no. 9, pp. 4485–4497 (2014), DOI: 10.1109/TIE.2013.2293708.
[12] Narayanan G., RanganathanV.T., Analytical evaluation of harmonic distortion inPWMAC drives using the notion of stator flux ripple, IEEE Transactions on Power Electronics, vol. 20, no. 2, pp. 466–474 (2005), DOI: 10.1109/TPEL.2004.842961.
[13] Zhao D., Hari V.S.S.P.K., Narayanan G., Ayyanar R., Space-vector-based hybrid pulse width modulation techniques for reduced harmonic distortion and switching loss, IEEE Trans. Power Electron., vol. 25, no. 3, pp. 760–774 (2010), DOI: 10.1109/TPEL.2009.2030200.
[14] Hava A.M., Kerkman R.J., Lipo T.A., Carrier-based PWM-VSI overmodulation strategies: Analysis, comparison and design, IEEE Transactions on Power Electronics, vol. 13, no. 4, pp. 674–689 (1998), DOI: 10.1109/63.704136.
[15] Raja Ayyanar, Zhao D., Krishnamurthy H.K., Narayanan G., Space vector methods for AC drives to achieve high efficiency and superior waveform quality, Technical report submitted to Office of Novel Research (2004).
[16] Yen-Shin Lai, Bowes S.R., Optimal bus-clamped PWM techniques for three-phase motor drives, in Proceedings of the IEEE IECON04, Nov. 2–6, Busan, Korea, pp. 1475–1480 (2004), DOI: 10.1109/IECON.2004.1431796.
[17] Boost M.A., Ziogas P.D., State-of-the-art carrier PWM techniques: acritical evaluation, IEEE Transactions on Industry Applications, vol. 24 no. 2, pp. 271–290 (1988), DOI: 10.1109/28.2867.
[18] Trzynadlowski A.M., Legowski S., Minimum-loss vectorPWMstrategy for three-phase inverters, IEEE Transactions on Power Electronics, vol. 9, no. 1, pp. 26–34 (1994), DOI: 10.1109/63.285490.
[19] Mao X., Ayyanar R., Krishnamurthy H.K., Optimal Variable switching frequency scheme for reducing switching loss in single-phase inverters based on time-domain ripple analysis, IEEE Transactions on Power Electronics, vol. 14, no. 4, pp. 991–1001 (2009), DOI: 10.1109/TPEL.2008.2009635.
[20] Kolar J.W., Ertl H., Zach F.C., Influence of the modulation method on the conduction and switching losses of a PWM converter system, IEEE Transactions on Industry Applications, vol. 27, no. 6, pp. 1063–1075 (1991), DOI: 10.1109/28.108456.
[21] Trzynadlowski A.M., Kirlin R.L., Legowski S.F., Space vectorPWMtechnique with minimum switching losses and a variable pulse rate, IEEE Transactions on Industry Electronics, vol. 44, no. 2, pp. 173–181 (1997), DOI: 10.1109/41.564155.
[22] Dae-Woong Chung, Seung-Ki Sul, Minimum-loss strategy for three-phase PWM rectifier, IEEE Transactions on Industry Electronics, vol. 46, no. 3, pp. 517–526 (1999), DOI: 10.1109/41.767058.
[23] Amitkumar K.S., Narayanan G., Simplified implementation of space vector PWM strategies for a three level inverter, Proc. of 7th IEEE International Conference (ICIIS) (2012), DOI: 10.1109/ICIInfS.2012.6304816.
[24] Das S.,Narayanan G.,Novel switching sequences for a space vector modulated three level inverter, IEEE Transactions on Industrial Electronics, vol. 59, no. 3, pp. 1477–1487 (2012), DOI: 10.1109/TIE.2011.2163373.
[25] Chamarthi P., Pawan Chhetri, Vivek Agarwal, Simplified Implementation scheme for Space Vector Pulse Width Modulation of n-level Inverter with Online Computation of Optimal Switching Pulse Durations, IEEE Transactions on Industrial Electronics, vol. 63, no. 11, pp. 1631–1639 (2016), DOI: 10.1109/TIE.2016.2586438.
[26] Yi Deng, YebinWang, Koon Hoo Teo, Harley R.G., A Simplified Space Vector Modulation Scheme for Multilevel Converters, IEEE Transactions on Power Electronics, vol. 31, no. 3, pp. 1873–1886 (2016), DOI: 10.1109/TPEL.2015.2429595.
[27] Kumar A.S., Gowri K.S., Kumar M.V., New generalized SVPWM algorithm for multilevel inverters, Journal of Power Electronics, vol. 18, no. 4, pp. 1027–1036 (2018), DOI: 10.6113/JPE.2018.18.4.1027.
[28] Kumar A.S., Gowri K.S., Kumar M.V., Performance study of various discontinuous PWM strategies for multilevel inverters using generalized space vector algorithm, Journal of Power Electronics, vol. 20, no. 1, pp. 100–108 (2020), DOI: 10.1007/s43236-019-00010-9.
[29] Kumar A.S., Gowri K., Kumar M.V., Decomposition based New Space Vector Algorithm for Three Level Inverter with various ADSVPWM strategies, Journal of Circuits, Systems and Computers, vol. 29, no. 06, 2050090 (2020), DOI: 10.1142/S0218126620500905.
Go to article

Authors and Affiliations

Suresh Kumar Anisetty
1
ORCID: ORCID
Sri Gowri Kolli
2
ORCID: ORCID
Nagaraja Rao S.
3
ORCID: ORCID
Manjunatha B.M.
1
ORCID: ORCID
Sesi Kiran P.
1
ORCID: ORCID
Niteesh Kumar K.
1
ORCID: ORCID

  1. RGM College of Engineering and Technology (Autonomous), Nandyal, A.P., India
  2. G. Pulla Reddy Engineering College (Autonomous), Kurnool, A.P., India
  3. M.S. Ramaiah University of Applied Sciences, Bangalore, India
Download PDF Download RIS Download Bibtex

Abstract

Current source inverters (CSI) is one of the widely used converter topology in medium voltage drive applications due to its simplicity, motor friendly waveforms and reliable short circuit protection. The current source inverters are usually fed by controlled current source rectifiers (CSR) with a large inductor to provide a constant supply current. A generalized control applicable for both CSI and CSR and their extension namely current source multilevel inverters (CSMLI) are dealt in this paper. As space vector pulse width modulation (SVPWM) features the advantages of flexible control, faster dynamic response, better DC utilization and easy digital implementation it is considered for this work. This paper generalizes SVPWM that could be applied for CSI, CSR and CSMLI. The intense computation involved in framing a generalized space vector control are discussed in detail. The algorithm includes determination of band, region, subregions and vectors. The algorithm is validated by simulation using MATLAB /SIMULINK for CSR 5, 7, 13 level CSMLI and for CSR fed CSI.

Go to article

Authors and Affiliations

J. Anitha Roseline
M. Senthil Kumaran
V. Rajini
Download PDF Download RIS Download Bibtex

Abstract

Fractional-slot concentrated-winding permanent magnet synchronous machines (FSCW-PMSMs) have a good prospect of application in the drive system of electric and hybrid electric vehicles. However, the armature magnetomotive force (MMF) of FSCWPMSM contains a large number of space harmonics, which induce large magnet eddycurrent loss (ECL). To solve this problem, a dual three-phase 10-pole and 24-slot winding layout is proposed.MMFharmonic analysis shows that the 1st, 7th and 17th space-harmonic winding factors of the proposed winding can be reduced by 100%, 87% and 87% respectively, compared with a dual three-phase 10-pole and 12-slot winding. Electromagnetic performances of the proposed machine under rated sinusoidal current supply and space vector pulse-width-modulated (SVPWM) voltage supply are investigated based on 2D finite-element analysis. It is shown that the proposed machine can meet the requirement of torque and efficiency in the full speed range. Especially, magnet ECL can be reduced greatly due to the reduction of the 7th and 17th space harmonics.
Go to article

Authors and Affiliations

Zhenfei Chen
1
Ning Xing
2
Hongzhong Ma
1
Zhixin Li
3
Jiayu Li
1
Chenyang Fan
1

  1. College of Energy and Electrical Engineering, Hohai University Jiangsu, China
  2. School of Electrical and Information Engineering, Tianjin University Tianjin, China
  3. Electric Power Science Research Institute, Jiangsu Electric Power Company, Jiangsu, China

This page uses 'cookies'. Learn more