Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this work, the authors proposed a modification of the working space one-strand tundish adapted for slab casting process. Numerical simulations of liquid steel flow in the considered flow reactor were performed. The tundish is equipped with a dam with a multi-hole filter. Two variants of the filter hole arrangement were tested and their effect on the liquid steel flow hydrodynamic structure in the tundish was examined. The computer calculations results were verified by performing experiments on the water model. The result of numerical and physical simulations an RTD (Residence Time Distribution) type F curve was generated, which define the transition zone between the cast steel grades during the sequential casting process. The results of the researches showed that the modification of a dam with a multi-hole filter affects on the formation of the liquid steel flow hydrodynamic structure and the transition zone. Furthermore, examinations of the liquid steel refining ability in the considered tundish were carried out. The influence of the filter holes arrangement on the non-metallic inclusions flotation process to the slag phase and liquid steel filtration processes was checked. Numerical simulations were performed in the Ansys-Fluent computer program.

Go to article

Authors and Affiliations

M. Bartosiewicz
A. Cwudziński
Download PDF Download RIS Download Bibtex

Abstract

In this study, low-carbon cast steel was reinforced with TiC by SHS-B method, also known as combustion synthesis during casting method. The composite zone was then subjected to surface remelting by Gas Tungsten Arc Welding (GTAW) method. The remelting operation was realized manually, at 150 A current magnitude. Microstructure, phase composition and hardness of remelted zone were investigated. XRD results reveal that the phases of the composite zone in initial state consist of TiC and Feα. Surface remelting resulted in formation of thick layers containing TiC carbides, Feα and Feγ. Microstructural examination has shown strong refinement of titanium carbides in remelted zone and complete dissolution of primary titanium carbides synthetized during casting. The average diameter of carbides was below 2 μm. The structural changes are induced by fast cooling which affects crystallization rate. The hardness (HV30) of the remelted layer was in the range between 250 HV and 425 HV, and was lower than hardness in initial state.

Go to article

Authors and Affiliations

S. Sobula
A. Kwiecień
E. Olejnik
P. Pałka
Download PDF Download RIS Download Bibtex

Abstract

In the presented work, the numerical simulations results of the liquid steel flow in the one strand tundish were shown. Influence of the modification and immersion depth in the liquid steel of the ladle shroud and subflux turbulence controller on hydrodynamic structure of the liquid steel movement in the working space of tundish were examined. The ladle shroud shape modification consisted on the decompression and compression of the main supplying stream of the tundish. The mathematical model used in the numerical simulations through physical modeling and industrial trials were validated. The numerical simulation results (using four variants of the modified ladle shroud immersion depth in the liquid steel) in the isothermal conditions using laboratory experiments on the water model were verified. Whereas, the numerical simulation results (using one of the tundish research variant) for non-isothermal were compared with the results from the industrial measurements. Three turbulence models: Realizable k-ε, RNG k-ε and SST k-ω were used in the computer calculations (performed via the Ansys-Fluent computer program). In order to obtain the actual view of the liquid steel flow hydrodynamic structure in the examined tundish for the two mathematical models using different turbulence models, which were most similar to the laboratory experiments and industrial measurements, the numerical simulations were performed in the non-isothermal conditions. The application in the computer calculations of the SST k-ω turbulence model caused the smallest differences between the numerical simulations, laboratory experiments and industrial measurements. Performed tests showed that ladle shroud can be used as a flow control device and the modified ladle shroud immersion at a depth of 0.1 m in the liquid steel caused the shortest range of the transition zone among the tested cases.

Go to article

Authors and Affiliations

M. Bartosiewicz
A. Cwudziński
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Analysis of the use of the Russian materials (liquid glass and softening additives) has been made in accordance with the modern requirements for use in the technological processes of casting as binding materials in the production of large-sized steel railway casting. The reasons for poor knockout of liquid glass mixtures have been investigated. A complex action softening additive has been recommended for a better knocking-out ability. This solution provides a softening effect at the points of maximum formation of the liquid glass matrix strength in the processes of polymorphic transformation of the material under the influence of elevated temperatures as the result of filling the mold cavity by the melt. It has been shown that the use of additives of complex action leads to the decrease in the specific work of the knockout by four – seven times depending on the composition of the mixture and the design features of the casting. Experimental-industrial tests of the proposed method for softening the liquid glass mixtures have been made and the "Front Buffer Stop" casting has been made (for the rolling stock of locomotives and railway wagons). The tests confirmed the effectiveness and expediency of implementation of new liquid glass mixtures with softening additives in conditions of foundry enterprises.

Go to article

Authors and Affiliations

Y. Svinoroev
K. Batyshev
V. Deev
K. Semenov
V. Bykadorov
E. Prusov
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this paper was testing suitability of the time-series analysis for quality control of the continuous steel casting process in

production conditions. The analysis was carried out on industrial data collected in one of Polish steel plants. The production data

concerned defective fractions of billets obtained in the process. The procedure of the industrial data preparation is presented. The

computations for the time-series analysis were carried out in two ways, both using the authors’ own software. The first one, applied to the

real numbers type of the data has a wide range of capabilities, including not only prediction of the future values but also detection of

important periodicity in data. In the second approach the data were assumed in a binary (categorical) form, i.e. the every heat(melt) was

labeled as ‘Good’ or ‘Defective’. The naïve Bayesian classifier was used for predicting the successive values. The most interesting results

of the analysis include good prediction accuracies obtained by both methodologies, the crucial influence of the last preceding point on the

predicted result for the real data time-series analysis as well as obtaining an information about the type of misclassification for binary data.

The possibility of prediction of the future values can be used by engineering or operational staff with an expert knowledge to decrease

fraction of defective products by taking appropriate action when the forthcoming period is identified as critical.

Go to article

Authors and Affiliations

A. Rodziewicz
M. Perzyk

This page uses 'cookies'. Learn more