Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this study was to verify the possibility of pharmacological induction of Foxp3 +CD25 +CD8 + and Foxp3 -CD103 +CD8 + T regulatory cells ‘armed’ with immunosuppressive molecules, i.e. CD39 and IL-10. To achieve this purpose, stimulated and unstimulated murine lymphocytes were exposed to IL-27, teriflunomide (TER) and all trans retinoic acid (ATRA). The study found that: (a) IL-27 induced CD39 expression on Foxp3 +CD25 +CD8 + T cells and the ability of CD103+Foxp3-CD8+ T cells to produce IL-10 as well as increasing the absolute number of IL-10 +CD103 +Foxp3 -CD8 + T cells; (b) TER induced Foxp3 expression in CD25+CD8+ T cells and CD103 expression on Foxp3 -CD8 + T cells as well as increasing the absolute number of Foxp3 +CD25 +CD8 + T cells; (c) ATRA induced the capacity of Foxp3 +CD25 +CD8 + T cells to produce IL-10. The following desired interactions were demonstrated between IL-27 and ATRA: (a) a strong synergistic effect with respect to increasing CD39 expression and the ability to produce IL-10 by Foxp3 +CD25 +CD8 + T cells; (b) a synergistic effect with respect to increasing the absolute count of CD39 +Foxp3 +CD25 +CD8 + T cells. The study revealed that TER abolished all these effects. Therefore, a combination of the tested agents did not induce the generation of Foxp3 +CD25 +CD8 + and Foxp3 -CD103+CD8+ T cells characterized by extensive CD39 expression and IL-10 production. Thus, in the context of the pharmacological induction of IL-10 +CD39 +Foxp3 +CD25 +CD8 + and IL-10 +CD103 +Foxp3 -CD8 + T cells, these findings strongly suggest that a combination of TER with IL-27 and/or ATRA does not provide any benefits over TER alone; moreover, such a combination may result in abolishing the desired effects exerted by IL-27 and/or ATRA.
Go to article

Bibliography

1. Aubagio®, assessment report. International non-proprietary name: Teriflunomide. Procedure No. EMEA/H/C/002514/ 0000. 27 June 2013 EMA/529295/2013. Available from here: https://www.ema.europa.eu/en/documents/assessmentreport/aubagio-epar-public-assessment-report_en.pdf
2. Bastid J, Cottalorda-Regairaz A, Alberici G, Bonnefoy N, Eliaou JF, Bensussan A (2013) ENTPD1/CD39 is a promising therapeutic target in oncology. Oncogene 32: 1743-1751.
3. Bastid J, Regairaz A, Bonnefoy N, Déjou C, Giustiniani J, Laheurte C, Cochaud S, Laprevotte E, Funck-Brentano E, Hemon P, Gros L, Bec N, Larroque C, Alberici G, Bensussan A, Eliaou JF (2015) Inhibition of CD39 enzymatic function at the surface of tumor cells alle-viates their immunosuppressive activity. Cancer Immunol Res 3: 254-265.
4. Batten M, Kljavin NM, Li J, Walter MJ, de Sauvage FJ, Ghilardi N (2008) Cutting edge: IL-27 is a potent inducer of IL-10 but not FoxP3 in murine T cells. J Immunol 180: 2752-2756.
5. Benson MJ, Pino-Lagos K, Rosemblatt M, Noelle RJ (2007) All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J Exp Med 204: 1765-1774.
6. Canale FP, Ramello MC, Núñez N, Araujo Furlan CL, Bossio SN, Gorosito Serrán M, Tosello Boari J, Del Castillo A, Ledesma M, Sedlik C, Piaggio E, Gruppi A, Acosta Rodríguez EA, Montes CL (2018) CD39 Expression Defines Cell Exhaustion in Tu-mor-Infiltrating CD8+ T Cells. Cancer Res 78: 115-128.
7. Chaput N, Louafi S, Bardier A, Charlotte F, Vaillant JC, Ménégaux F, Rosenzwajg M, Lemoine F, Klatzmann D, Taieb J (2009) Identi-fication of CD8+CD25+Foxp3+ suppressive T cells in colorectal cancer tissue. Gut 58: 520-529.
8. Churlaud G, Pitoiset, F, Jebbawi, F, Lorenzon R, Bellier B, Rosenzwajg M, Klatzmann D (2015) Human and Mouse CD8+CD25+FOXP3+ Regulatory T Cells at Steady State and during Interleukin-2 Therapy. Front Immunol 6: 171.
9. Correale J, Villa A (2010) Role of CD8+ CD25+ Foxp3+ regulatory T cells in multiple sclerosis. Ann Neurol 67: 625-638.
10. Eusebio M, Kraszula L, Kupczyk M, Kuna P, Pietruczuk M (2012) Low frequency of CD8+CD25+FOXP3(BRIGHT) T cells and FOXP3 mRNA expression in the peripheral blood of allergic asthma patients. J Biol Regul Homeost Agents 26: 211-220.
11. Friedman DJ, Künzli BM, A-Rahim YI, Sevigny J, Berberat PO, Enjyoji K, Csizmadia E, Friess H, Robson SC (2009) From the Cover: CD39 deletion exacerbates experimental murine colitis and human polymorphisms increase susceptibility to inflammatory bowel disease. Proc Natl Acad Sci USA 106: 16788-16793.
12. Jasiecka-Mikołajczyk A, Maślanka T (2023) Depletion of T and B cells in lymphoid tissues of mice induced by oclacitinib, a Janus ki-nase inhibitor. Pol J Vet Sci 26: 431-440.
13. Jasiecka-Mikołajczyk A, Socha P (2020) Teriflunomide inhibits activation-induced CD25 expression on T cells and may affect Foxp3-expressing regulatory T cells. Res Vet Sci 132: 17-27.
14. Jing J, Nelson C, Paik J, Shirasaka Y, Amory JK, Isoherranen N (2017) Physiologically Based Pharmacokinetic Model of All- trans-Retinoic Acid with Application to Cancer Populations and Drug Interactions. J Pharmacol Exp Ther 361: 246-258.
15. Kim G, Shinnakasu R, Saris CJ, Cheroutre H, Kronenberg M (2013) A novel role for IL-27 in mediating the survival of activated mouse CD4 T lymphocytes. J Immunol 190: 1510-1518.
16. Kiniwa Y, Miyahara Y, Wang HY, Peng W, Peng G, Wheeler TM, Thompson TC, Old LJ, Wang RF (2007) CD8+ Foxp3+ regulatory T cells mediate immunosuppression in prostate cancer. Clin Cancer Res 13: 6947-6958.
17. Lin L, Dai F, Wei J, Chen Z (2021) CD8+ Tregs ameliorate inflammatory reactions in a murine model of allergic rhinitis. Allergy Asthma Clin Immunol 17: 74.
18. Liston A, Aloulou M (2022) A fresh look at a neglected regulatory lineage: CD8+Foxp3+ Regulatory T cells. Immunol Lett 247: 22-26.
19. Liu Y, Lan Q, Lu L, Chen M, Xia Z, Ma J, Wang J, Fan H, Shen Y, Ryffel B, Brand D, Quismorio F, Liu Z, Horwitz DA, Xu A, Zheng SG (2014) Phenotypic and functional characteristic of a newly identified CD8+ Foxp3- CD103+ regulatory T cells. J Mol Cell Biol 6: 81-92.
20. Liu Z, Liu JQ, Talebian F, Wu LC, Li S, Bai XF (2013) IL-27 enhances the survival of tumor antigen-specific CD8+ T cells and pro-grams them into IL-10-producing, memory precursor-like effector cells. Eur J Immunol 43: 468-479.
21. Loza MJ, Anderson AS, O’Rourke KS, Wood J, Khan IU (2011) T-cell specific defect in expression of the NTPDase CD39 as a bi-omarker for lupus. Cell Immunol 271: 110-117.
22. Mahic M, Henjum K, Yaqub S, Bjørnbeth BA, Torgersen KM, Taskén K, Aandahl EM (2008) Generation of highly suppressive adap-tive CD8+CD25+FOXP3+ regulatory T cells by continuous antigen stimulation. Eur J Immunol 38: 640-646.
23. Maślanka T (2022) Effect of IL-27, teriflunomide and retinoic acid and their combinations on CD4+ T regulatory T cells – an in vitro study. Molecules 27: 8471.
24. Matsui M, Kishida T, Nakano H, Yoshimoto K, Shin-Ya M, Shimada T, Nakai S, Imanishi J, Yoshimoto T, Hisa Y, Mazda O (2009) Interleukin-27 activates natural killer cells and suppresses NK-resistant head and neck squamous cell carcinoma through inducing anti-body-dependent cellular cytotoxicity. Cancer Res 69: 2523-2530.
25. Ménoret S, Tesson L, Remy S, Gourain V, Sérazin C, Usal C, Guiffes A, Chenouard V, Ouisse LH, Gantier M, Heslan JM, Fourgeux C, Poschmann J, Guillonneau C, Anegon I (2023) CD4+ and CD8+ regulatory T cell characterization in the rat using a unique transgenic Foxp3-EGFP model. BMC Biol 21: 8.
26. Molodtsov A, Turk MJ (2018) Tissue Resident CD8 Memory T Cell Responses in Cancer and Autoimmunity. Front Immunol 9: 2810.
27. Murugaiyan G, Mittal A, Weiner HL (2010) Identification of an IL-27/osteopontin axis in dendritic cells and its modulation by IFN-gamma limits IL-17-mediated autoimmune inflammation. Proc Natl Acad Sci USA 107: 11495-11500.
28. Nwankwo E, Allington DR, Rivey MP (2012) Emerging oral immunomodulating agents – focus on teriflunomide for the treatment of multiple sclerosis. Degener Neurol Neuromuscul Dis 2: 15-28.
29. Ponthan F, Kogner P, Bjellerup P, Klevenvall L, Hassan M (2001) Bioavailability and dose-dependent anti-tumour effects of 9-cis retin-oic acid on human neuroblastoma xenografts in rat. Br J Cancer 85: 2004-2009.
30. Ringshausen I, Oelsner M, Bogner C, Peschel C, Decker T (2008) The immunomodulatory drug Leflunomide inhibits cell cycle progres-sion of B-CLL cells. Leukemia 22: 635-638.
31. Suzuki M, Konya C, Goronzy JJ, Weyand CM (2008) Inhibitory CD8+ T cells in autoimmune disease. Hum Immunol 69: 781-789.
32. Szondy Z, Reichert U, Fésüs L (1998) Retinoic acids regulate apoptosis of T lymphocytes through an interplay between RAR and RXR receptors. Cell Death Differ 5: 4-10.
33. Tang Q, Bluestone JA (2008) The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat Immunol 9: 239-244.
34. Wing JB, Tanaka A, Sakaguchi S (2019) Human FOXP3+ regulatory T cell heterogeneity and function in autoimmunity and cancer. Im-munity 50: 302-316.
35. Wen Z, Shimojima Y, Shirai T, Li Y, Ju J, Yang Z, Tian L, Goronzy JJ, Weyand CM (2016) NADPH oxidase deficiency underlies dysfunction of aged CD8+ Tregs. J Clin Invest 126: 1953-1967.
36. Xiao S, Jin H, Korn T, Liu SM, Oukka M, Lim B, Kuchroo VK (2008) Retinoic acid increases Foxp3+ regulatory T cells and inhibits development of Th17 cells by enhancing TGF-beta-driven Smad3 signaling and inhibiting IL-6 and IL-23 receptor expression. J Immu-nol 181: 2277-2284.
37. Zhong H, Liu Y, Xu Z, Liang P, Yang H, Zhang X, Zhao J, Chen J, Fu S, Tang Y, Lv J, Wang J, Olsen N, Xu A, Zheng SG (2018) TGF-β-Induced CD8+CD103+ regulatory T cells show potent therapeutic effect on chronic graft-versus-host disease lupus by suppress-ing B cells. Front Immunol 9: 35.
Go to article

Authors and Affiliations

T. Maślanka
1
A. Jasiecka-Mikołajczyk
1

  1. Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-718 Olsztyn, Poland

This page uses 'cookies'. Learn more