Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the acoustoelectric phenomenon in a layered structure: piezoelectric waveguide – semiconductor. The publication presents an original acoustic method for determining the electrical and electron parameters of the subsurface area in crystalline semiconductors. The method is based on the so-called transverse acoustoelectric effect realized in a layer system: piezoelectric waveguide with Rayleigh surface acoustic wave – semiconductor. The paper discusses the physical foundations of the transverse acoustoelectric effect in the piezoelectric – semiconductor layer system, taking into account the distinctness of the physical properties of the semiconductor near-surface region in relation to its volumetric properties. The work covers many experimental studies of the near-surface region of semiconductors. The original method was presented to determine such surface parameters as: surface potential, surface conductivity, mobility of carriers in the subsurface area, life time of charge carriers in surface states. By means of the acoustic method the following semiconductors have been extensively tested: indium phosphide InP and gallium phosphide GaP. These semiconductors are one of the main semiconductors of group III-V, which are the basis of modern photonics, optoelectronics as well as integrated optics. The work also includes an analysis of the measurement possibilities of the developed acoustic method and its limitations, as well as an analysis of the accuracy of the obtained values of the parameters of the subsurface area of crystalline semiconductors.
Go to article

Authors and Affiliations

Tadeusz Pustelny
1

  1. Department of Optoelectronics, Silesian University of Technology, Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of an analysis of gaseous sensors based on a surface acoustic wave (SAW) by means of the equivalent model theory. The applied theory analyzes the response of the SAW sensor in the steady state affected by carbon monoxide (CO) in air. A thin layer of WO3 has been used as a sensor layer. The acoustical replacing impedance of the sensor layer was used, which takes into account the profile of the concentration of gas molecules in the layer. Thanks to implementing the Ingebrigtsen equation, the authors determined analytical expressions for the relative changes of the velocity of the surface acoustic wave in the steady state. The results of the analysis have shown that there is an optimum thickness of the layer of CO sensor at which the acoustoelectric effect (manifested here as a change in the acoustic wave velocity) is at its highest. The theoretical results were verified and confirmed experimentally
Go to article

Authors and Affiliations

Tomasz Hejczyk
Marian Urbańczyk
Tadeusz Pustelny
Wiesław Jakubik

This page uses 'cookies'. Learn more