Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 10
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of the presented investigations was to irnprovc the quality of CFO numerical modeling of the propagation of gaseous contaminations in a test laboratory with a tracer gas source and a local exhaust in general mixing ventilation. The investigations were carried out making use of experimental identification of the flow. Concise information is presented concerning the CFO method applied in the modeling of the airflow and gaseous contaminant. The tested object has been characterized, as well as its respective experimental data. The ways of generating its simulation model has been described, paying special attention to the simulation of the diffuser. TI1e results of prediction have been compared with the results of measurements of the air velocity and the concentration of gaseous contaminant. Attempts have been made to improve the quality of the obtained results of prediction of the distribution of tracer gas concentration by increasing the accuracy simulating the diffuser, the jct leaving the diffuser and the airflow pattern in surrounding the contarninant source and suction nozzle. It has also been tried to utilize the results of numerical prediction for the purpose of determining the effectiveness of the local exhaust.
Go to article

Authors and Affiliations

Barbara Lipska
Download PDF Download RIS Download Bibtex

Abstract

In the present study performance of an airflow window in removing contaminants as well as providing thermal comfort for the occupants was investigated. Both natural/mixed ventilation methods were studied and the full heating load as well as contaminant sources in the office rooms considered. Then, the local and average temperature, relative humidity, velocity as well as CO2 and dust concentration were extracted from simulation results and compared to criteria in international ventilation standards. It was found that except in the big room having 8 m×6 m flooring, natural ventilation from the airflow window can satisfy the thermal and relative humidity conditions in the international ventilation standard except for the American Society of Heating, Refrigerating and Air-Conditioning Engineers. However, the thermal comfort in the room which was measured by extended predicted mean vote could not be achieved when the window operates in the natural ventilation mode, even with a 0.4 m height opening in the small (3 m×4 m) room. Finally, results indicated that the airflow ventilation system installed in small and medium offices operation can provide indoor condition in the ventilation standard either in natural/mixed operation mode consuming less energy than the traditional heating, ventilation, and air conditioning. Besides, the airflow system not only was not able to provide thermal comfort condition in the big office but also its application was not economically feasible.
Go to article

Bibliography

[1] Veriche R.K.V., Zamorano M., Carpio M.: Effects of climate change on variations in climatic zones and heating energy consumption of residential buildings in the southern Chile. Energy Build. 215(2020), 109874.
[2] Gulan M., Salaj M., Rohal’-Ilkiv B.: Application of adaptive multivariable Generalized Predictive Control to a HVAC system in real time. Arch. Control Sci. 24(2014), 1, 67–84.
[3] Ilbeigi M., Ghomeishi M., Dehghanbanadaki A.: Prediction and optimization of energy consumption in an office building using artificial neural network and a genetic algorithm. Sustain. Cities Soc. 61(2020), 102325.
[4] Awbi H.B.: Air movement in naturally-ventilated buildings. Renew. Energ. 8(1996), 1–4, 241–247.
[5] Stavrakakis G.M., Koukou M.K., Vrachopoulos M.Gr., Markatos N.C.: Natural cross-ventilation in buildings: Building-scale experiments, numerical simulation and thermal comfort evaluation. Energ. Build. 40(2008), 9, 1666–1681.
[6] Bangalee M.Z.I., Lin S.Y., Miau J.J.: Wind-driven natural ventilation through multiple windows of a building: A computational approach. Energ. Build. 45(2012), 317–325.
[7] Dascalaki E., Santamouris M., Asimakopoulos D.N.: On the use of deterministic and intelligent techniques to predict the air velocity distribution on external openings in single-sided natural ventilation configurations. Sol. Energy. 66(1999), 3, 223–243.
[8] Liu X., Lv X., Peng Z., Shi C.: Experimental study of airflow and pollutant dispersion in cross-ventilated multi-room buildings: Effects of source location and ventilation path. Sustain. Cities Soc. (2020), 52, 101822.
[9] Hu Y., Heiselberg P.K., Guo R.: Ventilation cooling/heating performance of a PCM enhanced ventilated window-an experimental study. Energ. Build. 214(2020), 109903.
[10] Chen Y., Tong Z., Wu W., Samuelson H., Malkawi A., Norford L.: Achieving natural ventilation potential in practice: Control schemes and levels of automation. Appl. Energ. 235(2019), 1, 1141–1152.
[11] Chen J., Brager G.S., Augenbroe G., Song X.: Impact of outdoor air quality on the natural ventilation usage of commercial buildings in the US. Appl. Energ. 235(2019), 1, 673–684.
[12] Goudarzi N., Sheikhshahrokhdehkordi M., Khalesi J., Hosseiniirani S.: Airflow and thermal comfort evaluation of a room with different outlet opening sizes and elevations ventilated by a two-sided wind catcher. J. Build. Eng. 37(2021), 102112.
[13] Park D.Y., Chang S.: Effects of combined central air conditioning diffusers and window-integrated ventilation system on indoor air quality and thermal comfort in an office. Sustain. Cities Soc. 61(2020), 102292.
[14] Tao Y., Zhang H., Zhang L., Zhang G., Tu J., Shi L.: Ventilation performance of a naturally ventilated double-skin façade in buildings. Renew. Energ. 167(2020), 184–198.
[15] Tartarini F., Schiavon S., Cheung T., Hoyt T.: CBE thermal comfort tool: online tool for thermal comfort calculations and visualizations. SoftwareX 12(2020), 100563.
[16] Liu S., Luo Z., Zhang K., Hang J.: Natural ventilation of a small-scale road tunnel by wind catchers: A CFD simulation study. Atmosphere 9(2018), 10, 411.
[17] Aghakhani M., Eslami G.: Thermal comfort assessment of underfloor vs. overhead air distribution system. J. Appl. Sci. 12(2012), 5, 473–479.
[18] Michaux G., Greffet R., Salagnac P., Ridoret J.: Modelling of an airflow window and numerical investigation of its thermal performances by comparison to conventional double and triple-glazed windows. Appl. Energ. 242(2019), 27–45.
[19] Phaff J.C., de Gids W.F., Ton J.A.,. van der Ree D.V., Schijndel L.L.M.: The ventilation of buildings: Investigation of the consequences of opening one window on the internal climate of a room. Report C 448, TNO Inst. for Environmental Hygiene and Health Technology (IMG-TNO), Delft 1980.
[20] Hashemi, M.M., Nikfarjam A., Raji H.: Novel fabrication of extremely high aspect ratio and straight nanogap and array nanogap electrodes. Microsyst. Technol. 25(2019), 541–549.
[21] Zhang Y., Olofsson T., Nair G., Zhao C., Yang B., Li A.: Cold windows induced airflow effects on the thermal environment for a large single-zone building. E3S Web Conf., 172(2020), 06003.
[22] Murmu R., Kumar P., Singh H.N.: Heat transfer and friction factor correlation for inclined spherical ball roughened solar air heater. Arch. Thermodyn. 41(2020), 2, 3–34.
[23] Roberto R.: Experimental and Numerical Analysis of Heat Transfer and Airflow on an Interactive Building Façade. Univ. Cagliari, Cagliari 2008.
[24] ANSYS Fluent UDF Manual, http://www.ansys.com
[25] Gosselin J., Chen Q.: A computational method for calculating heat transfer and airflow through a dual-airflow window. Energ. Build. 40(2008), 4, 452–458.
[26] Sun H., Zhao L. Zhang Y.: Evaluation of RNG and LES non-isothermal models for indoor airflow using PIV measurement data. T. ASABE 50(2007), 2, 621–631.
[27] Li X., Yan Y., Tu J.: Evaluation of models and methods to simulate thermal radiation in indoor spaces. Build. Environ. 144 (2018), 15, 259–267.
[28] Olesen, B.W. and Brager, G.S.: A better way to predict comfort: The new ASHRAE standard, 55(2004), 204–207.
[29] Patankar S.: Numerical Heat Transfer and Fluid Flow. CRC, Boca Raton 1998.
[30] Sultanov M.M., Arakelyan E.K., Boldyrev I.A., Lunenko V.S., Menshikov P.D.: Digital twin’s application in control systems for distributed generation of heat and electric energy. Arch. Thermodyn. 42(2021), 2, 89–101.
[31] Asif M.A.: A Theoretical Study of the Size Effect of Carbon Nanotubes on the Removal of Water Chemical Contaminants. J. Res. Sci., Eng. Technol. 6(2018), 4, 21–27.
[32] Fuliotto R., Cambuli F., Mandas N., Bacchin N., Manara G., Chen Q.: Experimental and numerical analysis of heat transfer and airflow on an interactive building facade. Energ. Build. 42(2010), 1, 23–28.
[33] Little W.J.: Mollier Diagram for Air. AEDC Arnold Engineering and Development Center, Arnold Afb Tn, 1963.
Go to article

Authors and Affiliations

Ildar Fathi Ajirlou
1
Cüneyt Kurtay
1

  1. Gazi University, Faculty of Engineering and Architecture, Department of Architecture, Yükselis 5, 06570 Maltepe-Ankara, Turkey
Download PDF Download RIS Download Bibtex

Abstract

Mining ventilation should ensure in the excavations required amount of air on the basis of determined regulations and to mitigate various hazards. These excavations are mainly: longwalls, function chambers and headings. Considering the financial aspect, the costs of air distribution should be as low as possible and due to mentioned above issues the optimal air distribution should be taken into account including the workers safety and minimization of the total output power of main ventilation fans. The optimal air distribution is when the airflow rate in the mining areas and functional chambers are suitable to the existing hazards, and the total output power of the main fans is at a minimal but sufficient rate.

Restructuring of mining sector in Poland is usually connected with the connection of different mines. Hence, dependent air streams (dependent air stream flows through a branch which links two intake air streams or two return air streams) exist in ventilation networks of connected mines. The zones of intake air and return air include these air streams. There are also particular air streams in the networks which connect subnetworks of main ventilation fans. They enable to direct return air to specified fans and to obtain different airflows in return zone. The new method of decreasing the costs of ventilation is presented in the article.

The method allows to determine the optimal parameters of main ventilation fans (fan pressure and air quantity) and optimal air distribution can be achieved as a result. Then the total output power of the fans is the lowest which makes the reduction of costs of mine ventilation.

The new method was applied for selected ventilation network. For positive regulation (by means of the stoppings) the optimal air distribution was achieved when the total output power of the fans was 253.311 kW and for most energy-intensive air distribution it was 409.893 kW. The difference between these cases showed the difference in annual energy consumption which was 1 714 MWh what was related to annual costs of fan work equaled 245 102 Euro. Similar values for negative regulation (by means of auxiliary fans) were: the total output power of the fans 203.359 kW (optimal condition) and 362.405 kW (most energy-intensive condition). The difference of annual energy consumption was 1 742 MWh and annual difference of costs was 249 106 Euro. The differences between optimal airflows considering positive and negative regulations were: the total output power of fans 49.952 kW, annual energy consumption 547 MWh, annual costs 78 217 Euro.

Go to article

Authors and Affiliations

Grzegorz Pach
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In the acoustic fatigue experiment for hypersonic vehicle in simulated harsh service environment on ground, acoustic loads on the surface of test pieces of the vehicle need to be measured. However, for the normal microphones without high temperature resistance ability, the near field sound measurement cannot be achieved. In this work, on the basis of previous researches, an acoustic tubes array is designed to achieve the near field measurement of acoustic loads on the surface of the test piece in the supersonic airflow with high temperature achieved by coherent jet oxygen lance. Firstly, the process of designing this acoustic tubes array is introduced. Secondly, the equality of phase differences at the front and at the end of the tubes is stated and proved using a phase differences test with an acoustic tubes array whose design is presented in this text; therefore, the phase differences of signals acquired by microphones can be directly applied to beamforming algorithm to determine the acoustic load source. Finally, using above mentioned acoustic tubes array, measurement of acoustic load, with and without a test piece in the supersonic airflow made by the coherent jet oxygen lance, is conducted respectively, and the measurements results are analyzed.
Go to article

Authors and Affiliations

Long Wei
Min Li
Qiang Fu
Yue Fan
Debin Yang
Download PDF Download RIS Download Bibtex

Abstract

It is well known that sound absorption and sound transmission properties of open porous materials are highly dependent on their airflow resistance values. Low values of airflow resistance indicate little resistance for air streaming through the porous material and high values are a sign that most of the pores inside the material are closed. The laboratory procedures for measuring airflow resistance have been stan- dardized by several organizations, including ISO and ASTM for both alternate flow and continuous flow. However, practical implementation of these standardized methods could be both complex and expensive. In this work, two indirect alternative measurement procedures were compared against the alternate flow standardized technique. The techniques were tested using three families of eco-friendly sound absorbent materials: recycled polyurethane foams, coconut natural fibres, and recycled polyester fibres. It is found that the values of airflow resistance measured using both alternative methods are very similar. There is also a good correlation between the values obtained through alternative and standardized methods.
Go to article

Authors and Affiliations

Romina del Rey
Jesus Alba
Jorge P. Arenas
Jaime Ramis
Download PDF Download RIS Download Bibtex

Abstract

There is an airflow velocity boundary layer near tunnel wall when the air is flowing in the underground coal mine. The thickness and distribution of the airflow velocity boundary layer could influence the discharge of harmful and toxic gases that enter the ventilating airflow through this flow interface. It may also have a major impact in coal mine gas explosion. The results of field measurements and simulation experimental data are used to research airflow velocity boundary layer in a flat walled mine roadway, which is considered in turn: as unsupported, I-steel sectioned arch or bolted and shot create supported cross section. By referenced to other literature studies that consider boundary layer characteristics and the analysis of on-site and experimental data sets we obtain the corresponding airflow velocity boundary layer characteristics for each of the supported roadway sections. The airflow velocity within the boundary layer increase is assumed to follow a logarithmic law given by the expression: u = a Ln(x) + b. It is concluded that the thickness of the airflow velocity boundary layer is observed to significantly decrease with the airflow center velocity and to increase with roadway wall roughness. The airflow velocity distribution is found to be described by the equation: u = (m1v + n1)Ln(d) + m2v + n2, for the three types coal mine tunnel taking into account the influence of center airflow velocity.

Go to article

Authors and Affiliations

Yonghao Luo
Yangsheng Zhao
Download PDF Download RIS Download Bibtex

Abstract

Balanced distribution of air in coal-fired boiler is one of the most important factors in the combustion process and is strongly connected to the overall system efficiency. Reliable and continuous information about combustion airflow and fuel rate is essential for achieving optimal stoichiometric ratio as well as efficient and safe operation of a boiler. Imbalances in air distribution result in reduced boiler efficiency, increased gas pollutant emission and operating problems, such as corrosion, slagging or fouling. Monitoring of air flow trends in boiler is an effective method for further analysis and can help to appoint important dependences and start optimization actions. Accurate real-time monitoring of the air distribution in boiler can bring economical, environmental and operational benefits. The paper presents a novel concept for online monitoring system of air distribution in coal-fired boiler based on real-time numerical calculations. The proposed mathematical model allows for identification of mass flow rates of secondary air to individual burners and to overfire air (OFA) nozzles. Numerical models of air and flue gas system were developed using software for power plant simulation. The correctness of the developed model was verified and validated with the reference measurement values. The presented numerical model for real-time monitoring of air distribution is capable of giving continuous determination of the complete air flows based on available digital communication system (DCS) data.

Go to article

Authors and Affiliations

Paweł Madejski
Piotr Żymełka
Daniel Nabagło
Tomasz Janda
Download PDF Download RIS Download Bibtex

Abstract

In the paper, the authors discuss the construction of a model of an exemplary urban layout. Numerical simulation has been performed by means of a commercial software Fluent using two different turbulence models: the popular k-ε realizable one, and the Reynolds Stress Model (RSM), which is still being developed. The former is a 2-equations model, while the latter – is a RSM model – that consists of 7 equations. The studies have shown that, in this specific case, a more complex model of turbulence is not necessary. The results obtained with this model are not more accurate than the ones obtained using the RKE model. The model, scale 1:400, was tested in a wind tunnel. The pressure measurement near buildings, oil visualization and scour technique were undertaken and described accordingly. Measurements gave the quantitative and qualitative information describing the nature of the flow. Finally, the data were compared with the results of the experiments performed. The pressure coefficients resulting from the experiment were compared with the coefficients obtained from the numerical simulation. At the same time velocity maps and streamlines obtained from the calculations were combined with the results of the oil visualisation and scour technique.

Go to article

Bibliography

[1] R. Yoshie, A. Mochida, Y. Tominaga, H. Kataoka, K. Harimoto, T. Nozu, and T. Shirasawa. Cooperative project for CFD prediction of pedestrian wind environment in the Architectural Institute of Japan. Journal of Wind Engineering and Industrial Aerodynamics, 95(9):1551–1578, 2007. doi: 10.1016/j.jweia.2007.02.023.
[2] A. Mochida and I.Y.F. Lun. Prediction of wind environment and thermal comfort at pedestrian level in urban area. Journal of Wind Engineering and Industrial Aerodynamics, 96(10):1498–1527, 2008. doi: 10.1016/j.jweia.2008.02.033.
[3] B. Blocken, T. Stathopoulos, J. Carmeliet, and J.L.M. Hensen. Application of computational fluid dynamics in building performance simulation for the outdoor environment: an overview. Journal of Building Performance Simulation, 4(2):157–184, 2011. doi: 10.1080/19401493.2010.513740.
[4] S.E. Kim and F. Boysan. Application of CFD to environmental flows. Journal of Wind Engineering and Industrial Aerodynamics, 81(1):145–158, 1999. doi: 10.1016/S0167-6105(99)00013-6.
[5] J. Franke, A. Hellsten, K.H. Schlunzen, and B. Carissimo. Best Practice Guideline for CFD Simulation of Flows in the Urban Environment: A Summary. University of Hamburg, Hamburg, 2007.
[6] J. Franke, A. Hellsten, K.H. Schlunzen, and B. Carissimo. The COST 732 best practice guideline for CFD simulation of flows in the urban environment: a summary. International Journal of Environment and Pollution, 44(1-4):419–427, 2011. doi: 10.1504/IJEP.2011.038443.
[7] S. Murakami, A. Mochida, and Y. Hayashi. Examining the k-ω model by means of a wind tunnel test and large-eddy simulation of the turbulence structure around a cube. Journal of Wind Engineering and Industrial Aerodynamics, 35:87–100, 1990. doi: 10.1016/0167-6105(90)90211-T.
[8] D.A. Köse and E. Dick. Prediction of the pressure distribution on a cubical building with implicit LES. Journal of Wind Engineering and Industrial Aerodynamics, 98(10):628–649, 2010. doi: 10.1016/j.jweia.2010.06.004.
[9] P.J. Richards and S.E. Norris. Appropriate boundary conditions for computational wind engineering models revisited. Journal of Wind Engineering and Industrial Aerodynamics, 99(4):257–266, 2011. doi: 10.1016/j.jweia.2010.12.008.
[10] D.A. Köse, D. Fauconnier, and E. Dick. ILES of flowover low-rise buildings: Influence of inflow conditions on the quality of the mean pressure distribution prediction. Journal of Wind Engineering and Industrial Aerodynamics, 99(10):1056–1068, 2011. doi: 10.1016/j.jweia.2011.07.008.
[11] S. Reiter. Validation process for CFD simulations of wind around buildings. In Proceedings of the European Built Environment CAE Conference, pages 1–18, London, June 2008.
[12] A. Kovar-Panskus, P. Louka, J.F. Sini, E. Savory, M. Czech, A. Abdelqari, P.G. Mestayer, and N. Toy. Influence of geometry on the mean flow within urban street canyons – a comparison of wind tunnel experiments and numerical simulations. Water, Air, and Soil Pollution: Focus, 2(5):365–380, 2002. doi: 10.1023/A:1021308022939.
[13] B. Blocken and J. Persoon. Pedestrian wind comfort around a large football stadium in an urban environment: CFD simulation, validation and application of the new Dutch wind nuisance standard. Journal of Wind Engineering and Industrial Aerodynamics, 97(5):255–270, 2009. doi: 10.1016/j.jweia.2009.06.007.
[14] M. Sakr Fadl and J. Karadelis. CFD simulations for wind comfort and safety in urban area: A case study of Coventry University central campus. International Journal of Architecture, Engineering and Construction, 2(2):131–143, 2013. doi: 10.7492/IJAEC.2013.013.
[15] B. Blocken, T. Stathopoulos, and J. Carmeliet. CFD simulation of the atmospheric boundary layer: wall function problems. Atmospheric Environment, 41(2):238–252, 2007. doi: 10.1016/j.atmosenv.2006.08.019.
[16] B. Blocken. 50 years of Computational Wind Engineering: past, present and future. Journal of Wind Engineering and Industrial Aerodynamics, 129:69–102, 2014. doi: 10.1016/j.jweia.2014.03.008.
[17] A. Flaga. Wind Engineering. Arkady, Warsaw, Poland, 2008. (in Polish).
[18] K. Klemm. A complex assessment of microclimate conditions found in widely spaced and dense urban structures. KILiW, Polish Academy of Sciences, 2011. (in Polish).
[19] K. Daniels. The Technology of Ecological Building. Birkhäuser, Basel-Boston-Berlin, 1997.
[20] R. Józwiak et al. An analysis of a potential influence on airing and wind conditions of the area surrounding an urban layout planned to be built at a lot situated in Warsaw, Powązkowska street 23/1. Warsaw University of Technology, 2013. internal, not published materials of Institute of Aeronautics and Applied Mechanics, (in Polish).
[21] B. Blocken and J. Carmeliet. Pedestrian wind environment around buildings: Literature review and practical examples. Journal of Thermal Envelope and Building Science, 28(2):107–159, 2004. doi: 10.1177/1097196304044396.
[22] E. Błazik-Borowa. Difficulties arising from the use of k-ω turbulence model for the purpose of determining the airflow around buildings.Lublin University of Technology Publisher, 2008. (in Polish).
[23] S. Murakami. Overview of turbulence models applied in CWE–1997. Journal of Wind Engineering and Industrial Aerodynamics, 74:1–24, 1998. doi: 10.1016/S0167-6105(98)00004-X.
[24] K. Hanjalic and B.E. Launder. A Reynolds stress model of turbulence and its application to thin shear flows. J. Fluid Mech, 52(4):609–638, 1972. doi: 10.1017/S002211207200268X.
[25] K. Gumowski, O. Olszewski, M. Pocwierz, and K. Zielonko-Jung. Comparative analysis of numerical and experimental studies of the airflow around the sample of urban development. Bulletin of the Polish Academy of Sciences Technical Sciences, 63(3):729–737, 2015. doi: 10.1515/bpasts-2015-0084.
[26] J.R. Taylor. Introduction to Error Analysis. University Science Books, 2nd edition, 1996.
[27] Y. Tominaga, A. Mochida, R.Yoshie, H. Kataoka, T.Nozu, M.Yoshikawa, and T. Shirasawa. AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. Journal of Wind Engineering and Industrial Aerodynamics, 96(10):1749–1761, 2008. doi: 10.1016/j.jweia.2008.02.058.
[28] Ansys Fluent Theory Guide, version 14.0. Canonsburg, 2011.
[29] Ansys Fluent User’s Guide, version 14.0. Canonsburg, 2011.
[30] H. Montazeri and B. Blocken. CFD simulation of wind-induced pressure coefficients on buildings with and without balconies: validation and sensitivity analysis. Building and Environment, 60:137–149, 2013. doi: 10.1016/j.buildenv.2012.11.012.
Go to article

Authors and Affiliations

Mateusz Jędrzejewski
1
Marta Poćwierz
1
Katarzyna Zielonko-Jung
2

  1. Warsaw University of Technology, Institute of Aeronautics and Applied Mechanics, Warsaw, Poland
  2. Warsaw University of Technology, Faculty of Architecture, Warsaw, Poland

This page uses 'cookies'. Learn more