Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Performance of standard Direction of Arrival (DOA) estimation techniques degraded under real-time signal conditions. The classical algorithms are Multiple Signal Classification (MUSIC), and Estimation of Signal Parameters via Rotational Invariance Technique (ESPRIT). There are many signal conditions hamper on its performance, such as closely spaced and coherent signals caused due to the multipath propagations of signals results in a decrease of the signal to noise ratio (SNR) of the received signal. In this paper, a novel DOA estimation technique named CW-PCA MUSIC is proposed using Principal Component Analysis (PCA) to threshold the nearby correlated wavelet coefficients of Dual-Tree Complex Wavelet transform (DTCWT) for denoising the signals before applying to MUSIC algorithm. The proposed technique improves the detection performance under closely spaced, and coherent signals with relatively low SNR conditions. Also, this method requires fewer snapshots, and less antenna array elements compared with standard MUSIC and wavelet-based DOA estimation algorithms.

Go to article

Authors and Affiliations

Dharmendra Ganage
Yerram Ravinder
Download PDF Download RIS Download Bibtex

Abstract

During the next generation of wireless cellular networks, the millimeter-wave (mm-wave) spectrum will bring new opportunities for exceptionally high data transfer speeds and extensive network connectivity. Millimeter waves, on the other hand, are subject to a significant loss of propagation, which is the most significant impediment. A beneficial solution to this difficulty, which can be overcome, is to use a beam-forming system that consists of many antennas. The purpose of this study is to provide a concept for an integrated photonic beam-forming system that utilises multiple ring resonators for a 1 × 4 phase array antenna operating in the Ka-Band frequency range. The waveguide technology is the foundation for a signal that operates at 28 GHz. It is through the use of the optical ring resonator that the actual time delay line may accomplish its goal. The suggested method can be imDuring the next generation of wireless cellular networks, the millimeter-wave (mm-wave) spectrum will bring new opportunities for exceptionally high data transfer speeds and extensive network connectivity. Millimeter waves, on the other hand, are subject to a significant loss of propagation, which is the most significant impediment. A beneficial solution to this difficulty, which can be overcome, is to use a beam-forming system that consists of many antennas. The purpose of this study is to provide a concept for an integrated photonic beam-forming system that utilises multiple ring resonators for a 1 × 4 phase array antenna operating in the Ka-Band frequency range. The waveguide technology is the foundation for a signal that operates at 28 GHz. It is through the use of the optical ring resonator that the actual time delay line may accomplish its goal. The suggested method can be implemented as a variable true time delay (TTD) line to change the radiation angle of phase array antennas (PAA). The main lobe radiated by the PAA can be directed squint-free between the angles from −28° to +28°. The mathematical analysis and design of the beam producing the structure are presented. Following that, delays of 650 ps, 350 ps, and 250 ps could be produced with coupling coefficients of κ = 0.5 , κ = 0.7, and κ = 0.9 , respectively, and the associated phase shifts were 0.469π, 0.146π, and 0.387π.plemented as a variable true time delay (TTD) line to change the radiation angle of phase array antennas (PAA). The main lobe radiated by the PAA can be directed squint-free between the angles from −28° to +28°. The mathematical analysis and design of the beam producing the structure are presented. Following that, delays of 650 ps, 350 ps, and 250 ps could be produced with coupling coefficients of κ = 0.5 , κ = 0.7, and κ = 0.9 , respectively, and the associated phase shifts were 0.469π, 0.146π, and 0.387π.
Go to article

Authors and Affiliations

Md. Danish Nadeem
1
Sanjeev Kumar Raghuwanshi
1
Ritesh Kumar
2

  1. Microwave Photonics Laboratory, Department of Electronics Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad Jharkhand-826004, India
  2. Shri Phaneshwar Nath Renu Engineering College, Araria, Bihar 854318, India

This page uses 'cookies'. Learn more